How to accumulate gradients in tensorflow?

Let's walk through the code proposed in one of the answers you linked to:

## Optimizer definition - nothing different from any classical example
opt = tf.train.AdamOptimizer()

## Retrieve all trainable variables you defined in your graph
tvs = tf.trainable_variables()
## Creation of a list of variables with the same shape as the trainable ones
# initialized with 0s
accum_vars = [tf.Variable(tf.zeros_like(tv.initialized_value()), trainable=False) for tv in tvs]
zero_ops = [tv.assign(tf.zeros_like(tv)) for tv in accum_vars]

## Calls the compute_gradients function of the optimizer to obtain... the list of gradients
gvs = opt.compute_gradients(rmse, tvs)

## Adds to each element from the list you initialized earlier with zeros its gradient (works because accum_vars and gvs are in the same order)
accum_ops = [accum_vars[i].assign_add(gv[0]) for i, gv in enumerate(gvs)]

## Define the training step (part with variable value update)
train_step = opt.apply_gradients([(accum_vars[i], gv[1]) for i, gv in enumerate(gvs)])

This first part basically adds new variables and ops to your graph which will allow you to

  1. Accumulate the gradient with ops accum_ops in (the list of) variable accum_vars
  2. Update the model weights with ops train_step

Then, to use it when training, you have to follow these steps (still from the answer you linked):

## The while loop for training
while ...:
    # Run the zero_ops to initialize it
    sess.run(zero_ops)
    # Accumulate the gradients 'n_minibatches' times in accum_vars using accum_ops
    for i in xrange(n_minibatches):
        sess.run(accum_ops, feed_dict=dict(X: Xs[i], y: ys[i]))
    # Run the train_step ops to update the weights based on your accumulated gradients
    sess.run(train_step)

Tensorflow 2.0 Compatible Answer: In line with the Pop's Answer mentioned above and the explanation provided in Tensorflow Website, mentioned below is the code for Accumulating Gradients in Tensorflow Version 2.0:

def train(epochs):
  for epoch in range(epochs):
    for (batch, (images, labels)) in enumerate(dataset):
       with tf.GradientTape() as tape:
        logits = mnist_model(images, training=True)
        tvs = mnist_model.trainable_variables
        accum_vars = [tf.Variable(tf.zeros_like(tv.initialized_value()), trainable=False) for tv in tvs]
        zero_ops = [tv.assign(tf.zeros_like(tv)) for tv in accum_vars]
        loss_value = loss_object(labels, logits)

       loss_history.append(loss_value.numpy().mean())
       grads = tape.gradient(loss_value, tvs)
       #print(grads[0].shape)
       #print(accum_vars[0].shape)
       accum_ops = [accum_vars[i].assign_add(grad) for i, grad in enumerate(grads)]



    optimizer.apply_gradients(zip(grads, mnist_model.trainable_variables))
    print ('Epoch {} finished'.format(epoch))

# call the above function    
train(epochs = 3)

Complete code can be found in this Github Gist.