How to append a tuple to a numpy array without it being preformed element-wise?
I agree with @user2357112 comment:
appending to NumPy arrays is catastrophically slower than appending to ordinary lists. It's an operation that they are not at all designed for
Here's a little benchmark:
# measure execution time
import timeit
import numpy as np
def f1(num_iterations):
x = np.dtype((np.int32, (2, 1)))
for i in range(num_iterations):
x = np.append(x, (i, i))
def f2(num_iterations):
x = np.array([(0, 0)])
for i in range(num_iterations):
x = np.vstack((x, (i, i)))
def f3(num_iterations):
x = []
for i in range(num_iterations):
x.append((i, i))
x = np.array(x)
N = 50000
print timeit.timeit('f1(N)', setup='from __main__ import f1, N', number=1)
print timeit.timeit('f2(N)', setup='from __main__ import f2, N', number=1)
print timeit.timeit('f3(N)', setup='from __main__ import f3, N', number=1)
I wouldn't use neither np.append nor vstack, I'd just create my python array properly and then use it to construct the np.array
EDIT
Here's the benchmark output on my laptop:
- append: 12.4983000173
- vstack: 1.60663705793
- list: 0.0252208517006
[Finished in 14.3s]
You need to supply the shape to numpy dtype, like so:
x = np.dtype((np.int32, (1,2)))
x = np.append(x,(2,3))
Outputs
array([dtype(('<i4', (2, 3))), 1, 2], dtype=object)
[Reference][1]http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html