How to calculate percentage with Pandas' DataFrame
First, make the keys of your dictionary the index of you dataframe:
import pandas as pd
a = {'Test 1': 4, 'Test 2': 1, 'Test 3': 1, 'Test 4': 9}
p = pd.DataFrame([a])
p = p.T # transform
p.columns = ['score']
Then, compute the percentage and assign to a new column.
def compute_percentage(x):
pct = float(x/p['score'].sum()) * 100
return round(pct, 2)
p['percentage'] = p.apply(compute_percentage, axis=1)
This gives you:
score percentage
Test 1 4 26.67
Test 2 1 6.67
Test 3 1 6.67
Test 4 9 60.00
[4 rows x 2 columns]
If indeed percentage of 10
is what you want, the simplest way is to adjust your intake of the data slightly:
>>> p = pd.DataFrame(a.items(), columns=['item', 'score'])
>>> p['perc'] = p['score']/10
>>> p
Out[370]:
item score perc
0 Test 2 1 0.1
1 Test 3 1 0.1
2 Test 1 4 0.4
3 Test 4 9 0.9
For real percentages, instead:
>>> p['perc']= p['score']/p['score'].sum()
>>> p
Out[427]:
item score perc
0 Test 2 1 0.066667
1 Test 3 1 0.066667
2 Test 1 4 0.266667
3 Test 4 9 0.600000