How to check if a CPU supports the SSE3 instruction set?
Mysticial's answer is a bit dangerous -- it explains how to detect CPU support but not OS support. You need to use _xgetbv to check whether the OS has enabled the required CPU extended state. See here for another source. Even gcc has made the same mistake. The meat of the code is:
bool avxSupported = false;
int cpuInfo[4];
__cpuid(cpuInfo, 1);
bool osUsesXSAVE_XRSTORE = cpuInfo[2] & (1 << 27) || false;
bool cpuAVXSuport = cpuInfo[2] & (1 << 28) || false;
if (osUsesXSAVE_XRSTORE && cpuAVXSuport)
{
unsigned long long xcrFeatureMask = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
avxSupported = (xcrFeatureMask & 0x6) == 0x6;
}
I've created a GitHub repro that will detect CPU and OS support for all the major x86 ISA extensions: https://github.com/Mysticial/FeatureDetector
Here's a shorter version:
First you need to access the CPUID instruction:
#ifdef _WIN32
// Windows
#define cpuid(info, x) __cpuidex(info, x, 0)
#else
// GCC Intrinsics
#include <cpuid.h>
void cpuid(int info[4], int InfoType){
__cpuid_count(InfoType, 0, info[0], info[1], info[2], info[3]);
}
#endif
Then you can run the following code:
// Misc.
bool HW_MMX;
bool HW_x64;
bool HW_ABM; // Advanced Bit Manipulation
bool HW_RDRAND;
bool HW_BMI1;
bool HW_BMI2;
bool HW_ADX;
bool HW_PREFETCHWT1;
// SIMD: 128-bit
bool HW_SSE;
bool HW_SSE2;
bool HW_SSE3;
bool HW_SSSE3;
bool HW_SSE41;
bool HW_SSE42;
bool HW_SSE4a;
bool HW_AES;
bool HW_SHA;
// SIMD: 256-bit
bool HW_AVX;
bool HW_XOP;
bool HW_FMA3;
bool HW_FMA4;
bool HW_AVX2;
// SIMD: 512-bit
bool HW_AVX512F; // AVX512 Foundation
bool HW_AVX512CD; // AVX512 Conflict Detection
bool HW_AVX512PF; // AVX512 Prefetch
bool HW_AVX512ER; // AVX512 Exponential + Reciprocal
bool HW_AVX512VL; // AVX512 Vector Length Extensions
bool HW_AVX512BW; // AVX512 Byte + Word
bool HW_AVX512DQ; // AVX512 Doubleword + Quadword
bool HW_AVX512IFMA; // AVX512 Integer 52-bit Fused Multiply-Add
bool HW_AVX512VBMI; // AVX512 Vector Byte Manipulation Instructions
int info[4];
cpuid(info, 0);
int nIds = info[0];
cpuid(info, 0x80000000);
unsigned nExIds = info[0];
// Detect Features
if (nIds >= 0x00000001){
cpuid(info,0x00000001);
HW_MMX = (info[3] & ((int)1 << 23)) != 0;
HW_SSE = (info[3] & ((int)1 << 25)) != 0;
HW_SSE2 = (info[3] & ((int)1 << 26)) != 0;
HW_SSE3 = (info[2] & ((int)1 << 0)) != 0;
HW_SSSE3 = (info[2] & ((int)1 << 9)) != 0;
HW_SSE41 = (info[2] & ((int)1 << 19)) != 0;
HW_SSE42 = (info[2] & ((int)1 << 20)) != 0;
HW_AES = (info[2] & ((int)1 << 25)) != 0;
HW_AVX = (info[2] & ((int)1 << 28)) != 0;
HW_FMA3 = (info[2] & ((int)1 << 12)) != 0;
HW_RDRAND = (info[2] & ((int)1 << 30)) != 0;
}
if (nIds >= 0x00000007){
cpuid(info,0x00000007);
HW_AVX2 = (info[1] & ((int)1 << 5)) != 0;
HW_BMI1 = (info[1] & ((int)1 << 3)) != 0;
HW_BMI2 = (info[1] & ((int)1 << 8)) != 0;
HW_ADX = (info[1] & ((int)1 << 19)) != 0;
HW_SHA = (info[1] & ((int)1 << 29)) != 0;
HW_PREFETCHWT1 = (info[2] & ((int)1 << 0)) != 0;
HW_AVX512F = (info[1] & ((int)1 << 16)) != 0;
HW_AVX512CD = (info[1] & ((int)1 << 28)) != 0;
HW_AVX512PF = (info[1] & ((int)1 << 26)) != 0;
HW_AVX512ER = (info[1] & ((int)1 << 27)) != 0;
HW_AVX512VL = (info[1] & ((int)1 << 31)) != 0;
HW_AVX512BW = (info[1] & ((int)1 << 30)) != 0;
HW_AVX512DQ = (info[1] & ((int)1 << 17)) != 0;
HW_AVX512IFMA = (info[1] & ((int)1 << 21)) != 0;
HW_AVX512VBMI = (info[2] & ((int)1 << 1)) != 0;
}
if (nExIds >= 0x80000001){
cpuid(info,0x80000001);
HW_x64 = (info[3] & ((int)1 << 29)) != 0;
HW_ABM = (info[2] & ((int)1 << 5)) != 0;
HW_SSE4a = (info[2] & ((int)1 << 6)) != 0;
HW_FMA4 = (info[2] & ((int)1 << 16)) != 0;
HW_XOP = (info[2] & ((int)1 << 11)) != 0;
}
Note that this only detects whether the CPU supports the instructions. To actually run them, you also need to have operating system support.
Specifically, operating system support is required for:
- x64 instructions. (You need a 64-bit OS.)
- Instructions that use the (AVX) 256-bit
ymm
registers. See Andy Lutomirski's answer for how to detect this. - Instructions that use the (AVX512) 512-bit
zmm
and mask registers. Detecting OS support for AVX512 is the same as with AVX, but using the flag0xe6
instead of0x6
.
After quite a bit of googling, I also found the solutions from Intel:
Link: https://software.intel.com/en-us/articles/how-to-detect-new-instruction-support-in-the-4th-generation-intel-core-processor-family
void cpuid(uint32_t eax, uint32_t ecx, uint32_t* abcd) {
#if defined(_MSC_VER)
__cpuidex((int*)abcd, eax, ecx);
#else
uint32_t ebx, edx;
# if defined( __i386__ ) && defined ( __PIC__ )
/* in case of PIC under 32-bit EBX cannot be clobbered */
__asm__("movl %%ebx, %%edi \n\t cpuid \n\t xchgl %%ebx, %%edi" : "=D" (ebx),
# else
__asm__("cpuid" : "+b" (ebx),
# endif
"+a" (eax), "+c" (ecx), "=d" (edx));
abcd[0] = eax; abcd[1] = ebx; abcd[2] = ecx; abcd[3] = edx;
#endif
}
int check_xcr0_ymm()
{
uint32_t xcr0;
#if defined(_MSC_VER)
xcr0 = (uint32_t)_xgetbv(0); /* min VS2010 SP1 compiler is required */
#else
__asm__("xgetbv" : "=a" (xcr0) : "c" (0) : "%edx");
#endif
return ((xcr0 & 6) == 6); /* checking if xmm and ymm state are enabled in XCR0 */
}
Also note that GCC has some special intrinsics that you can use (see: https://gcc.gnu.org/onlinedocs/gcc-4.9.2/gcc/X86-Built-in-Functions.html ):
if (__builtin_cpu_supports("avx2"))
// ...
If you put this together with the information above, it'll all work out fine.