How to compute Dedekind eta function efficiently?
Euler's formula
$$ \sum\limits_{n \in \mathbb{Z}} {( - 1)^n q^{\frac{{(3n^2 - n)}} {2}} } = \prod\limits_{n = 1}^\infty {(1 - q^n ),} $$
(which can be proven from Jacobi’s triple product identity by using the fact that $\prod\limits_{n = 1}^\infty {(1 - q^{3n} )(1 - q^{3n - 2} )} (1 - q^{3n - 1} ) = \prod\limits_{n = 1}^\infty {(1 - q^n )} $) provides a good way of numerically computing
$$ \eta (\tau )=e^{\frac {\pi {\rm {{i}\tau }}}{12}}\prod _{n=1}^{\infty }(1-e^{2n\pi {\rm {{i}\tau }}})=q^{\frac {1}{24}}\prod _{n=1}^{\infty }(1-q^{n}). $$
I hope this answers your question.