How to compute $(\mathbf{A} \cdot \mathbf{\nabla})\mathbf{B}$?
It means that the differential operator $$ \mathbf{A} \cdot \nabla = (A_x,A_y,A_z) \cdot (\partial_x,\partial_y,\partial_z) = A_x \partial_x + A_y \partial_y + A_z \partial_z $$ acts componentwise on the vector $\mathbf{B}$.