How to compute the cosine_similarity in pytorch for all rows in a matrix with respect to all rows in another matrix

By manually computing the similarity and playing with matrix multiplication + transposition:

import torch
from scipy import spatial
import numpy as np

a = torch.randn(2, 2)
b = torch.randn(3, 2) # different row number, for the fun

# Given that cos_sim(u, v) = dot(u, v) / (norm(u) * norm(v))
#                          = dot(u / norm(u), v / norm(v))
# We fist normalize the rows, before computing their dot products via transposition:
a_norm = a / a.norm(dim=1)[:, None]
b_norm = b / b.norm(dim=1)[:, None]
res = torch.mm(a_norm, b_norm.transpose(0,1))
print(res)
#  0.9978 -0.9986 -0.9985
# -0.8629  0.9172  0.9172

# -------
# Let's verify with numpy/scipy if our computations are correct:
a_n = a.numpy()
b_n = b.numpy()
res_n = np.zeros((2, 3))
for i in range(2):
    for j in range(3):
        # cos_sim(u, v) = 1 - cos_dist(u, v)
        res_n[i, j] = 1 - spatial.distance.cosine(a_n[i], b_n[j])
print(res_n)
# [[ 0.9978022  -0.99855876 -0.99854881]
#  [-0.86285472  0.91716063  0.9172349 ]]

Adding eps for numerical stability base on benjaminplanche's answer:

def sim_matrix(a, b, eps=1e-8):
    """
    added eps for numerical stability
    """
    a_n, b_n = a.norm(dim=1)[:, None], b.norm(dim=1)[:, None]
    a_norm = a / torch.max(a_n, eps * torch.ones_like(a_n))
    b_norm = b / torch.max(b_n, eps * torch.ones_like(b_n))
    sim_mt = torch.mm(a_norm, b_norm.transpose(0, 1))
    return sim_mt