How to convert a JPA OneToMany relationship to DTO

Now if you really want to sort things out on your own:

1) In the mapper class you could define implement mappers resolving this issue by making them unidirectional. With methods like MapPlanWithActivities(), MapPlan(), MapActivitiesWithPlan() and MapActivities(). this way you could know what data you need and according to what function you use you know when to stop the recursion.

2) The other (much) more complex solution would be to solve the issue by logic and detect the loop. You can for instance define an annotation for that case as Jackson Library does. for that you will have to use some java reflection. See Java Reflection here

3) the easiest way would be to use Dozer as said in my comment:Dozer


Table relationships

Let's assume we have the following post and post_comment tables, which form a one-to-many relationship via the post_id Foreign Key column in the post_comment table.

The post and post_comment tables used for the JPA DTO projection

Fetching a one-to-many DTO projection with JPA and Hibernate

Considering we have a use case that only requires fetching the id and title columns from the post table, as well as the id and review columns from the post_comment tables, we could use the following JPQL query to fetch the required projection:

select p.id as p_id, 
       p.title as p_title,
       pc.id as pc_id, 
       pc.review as pc_review
from PostComment pc
join pc.post p
order by pc.id

When running the projection query above, we get the following results:

| p.id | p.title                           | pc.id | pc.review                             |
|------|-----------------------------------|-------|---------------------------------------|
| 1    | High-Performance Java Persistence | 1     | Best book on JPA and Hibernate!       |
| 1    | High-Performance Java Persistence | 2     | A must-read for every Java developer! |
| 2    | Hypersistence Optimizer           | 3     | It's like pair programming with Vlad! |

However, we don't want to use a tabular-based ResultSet or the default List<Object[]>JPA or Hibernate query projection. We want to transform the aforementioned query result set to a List of PostDTO objects, each such object having a comments collection containing all the associated PostCommentDTO objects:

The PostDTO and PostCommentDTO used for DTO projection

We can use a Hibernate ResultTransformer, as illustrated by the following example:

List<PostDTO> postDTOs = entityManager.createQuery("""
    select p.id as p_id, 
           p.title as p_title,
           pc.id as pc_id, 
           pc.review as pc_review
    from PostComment pc
    join pc.post p
    order by pc.id
    """)
.unwrap(org.hibernate.query.Query.class)
.setResultTransformer(new PostDTOResultTransformer())
.getResultList();

assertEquals(2, postDTOs.size());
assertEquals(2, postDTOs.get(0).getComments().size());
assertEquals(1, postDTOs.get(1).getComments().size());

The PostDTOResultTransformer is going to define the mapping between the Object[] projection and the PostDTO object containing the PostCommentDTO child DTO objects:

public class PostDTOResultTransformer 
        implements ResultTransformer {

    private Map<Long, PostDTO> postDTOMap = new LinkedHashMap<>();

    @Override
    public Object transformTuple(
            Object[] tuple, 
            String[] aliases) {
            
        Map<String, Integer> aliasToIndexMap = aliasToIndexMap(aliases);
        
        Long postId = longValue(tuple[aliasToIndexMap.get(PostDTO.ID_ALIAS)]);

        PostDTO postDTO = postDTOMap.computeIfAbsent(
            postId, 
            id -> new PostDTO(tuple, aliasToIndexMap)
        );
        
        postDTO.getComments().add(
            new PostCommentDTO(tuple, aliasToIndexMap)
        );

        return postDTO;
    }

    @Override
    public List transformList(List collection) {
        return new ArrayList<>(postDTOMap.values());
    }
}

The aliasToIndexMap is just a small utility that allows us to build a Map structure that associates the column aliases and the index where the column value is located in the Object[] tuple array:

public  Map<String, Integer> aliasToIndexMap(
        String[] aliases) {
    
    Map<String, Integer> aliasToIndexMap = new LinkedHashMap<>();
    
    for (int i = 0; i < aliases.length; i++) {
        aliasToIndexMap.put(aliases[i], i);
    }
    
    return aliasToIndexMap;
}

The postDTOMap is where we are going to store all PostDTO entities that, in the end, will be returned by the query execution. The reason we are using the postDTOMap is that the parent rows are duplicated in the SQL query result set for each child record.

The computeIfAbsent method allows us to create a PostDTO object only if there is no existing PostDTO reference already stored in the postDTOMap.

The PostDTO class has a constructor that can set the id and title properties using the dedicated column aliases:

public class PostDTO {

    public static final String ID_ALIAS = "p_id";
    
    public static final String TITLE_ALIAS = "p_title";

    private Long id;

    private String title;

    private List<PostCommentDTO> comments = new ArrayList<>();

    public PostDTO(
            Object[] tuples, 
            Map<String, Integer> aliasToIndexMap) {
            
        this.id = longValue(tuples[aliasToIndexMap.get(ID_ALIAS)]);
        this.title = stringValue(tuples[aliasToIndexMap.get(TITLE_ALIAS)]);
    }

    //Getters and setters omitted for brevity
}

The PostCommentDTO is built in a similar fashion:

public class PostCommentDTO {

    public static final String ID_ALIAS = "pc_id";
    
    public static final String REVIEW_ALIAS = "pc_review";

    private Long id;

    private String review;

    public PostCommentDTO(
            Object[] tuples, 
            Map<String, Integer> aliasToIndexMap) {
        this.id = longValue(tuples[aliasToIndexMap.get(ID_ALIAS)]);
        this.review = stringValue(tuples[aliasToIndexMap.get(REVIEW_ALIAS)]);
    }

    //Getters and setters omitted for brevity
}

That's it!

Using the PostDTOResultTransformer, the SQL result set can be transformed into a hierarchical DTO projection, which is much convenient to work with, especially if it needs to be marshalled as a JSON response:

postDTOs = {ArrayList}, size = 2
  0 = {PostDTO} 
    id = 1L
    title = "High-Performance Java Persistence"
    comments = {ArrayList}, size = 2
      0 = {PostCommentDTO} 
        id = 1L
        review = "Best book on JPA and Hibernate!"
      1 = {PostCommentDTO} 
        id = 2L
        review = "A must read for every Java developer!"
  1 = {PostDTO} 
    id = 2L
    title = "Hypersistence Optimizer"
    comments = {ArrayList}, size = 1
      0 = {PostCommentDTO} 
       id = 3L
       review = "It's like pair programming with Vlad!"

Tags:

Java

Jpa

Dto