How to convert an array extracted from a json string field to a bigquery Repeated field?

There is no way to do this using SQL functions in BigQuery at the time of this writing unless you can impose a hard limit on the number of values in the JSON array; see the relevant issue tracker item. Your options are:

  • Process the data differently (e.g. using Cloud Dataflow or another tool) so that you can load it from newline-delimited JSON into BigQuery.
  • Use a JavaScript UDF that takes the input JSON and returns the desired type; this is fairly straightforward but generally uses more CPU (and hence may require a higher billing tier).
  • Use SQL functions with the understanding that the solution breaks down if there are too many elements.

Here is the approach using a JavaScript UDF:

#standardSQL
CREATE TEMP FUNCTION JsonToItems(input STRING)
RETURNS STRUCT<order_id INT64, customer_id STRING, items ARRAY<STRUCT<line STRING, ref_ids ARRAY<STRING>, sku STRING, amount INT64>>>
LANGUAGE js AS """
return JSON.parse(input);
""";

WITH Input AS (
  SELECT '{"order_id":"123456","customer_id":"2abcd", "items":[{"line":"1","ref_ids":["66b56e60","9e7ca2b7"],"sku":"1111","amount":40 },{"line":"2","ref_ids":["7777h0","8888j0"],"sku":"2222","amount":10 }]}' AS json
)
SELECT
  JsonToItems(json).*
FROM Input;

If you do want to try the SQL-based approach without JavaScript, here's somewhat of a hack until the feature request above is resolved, where the number of array elements must be no more than 10:

#standardSQL
CREATE TEMP FUNCTION JsonExtractRefIds(json STRING) AS (
  (SELECT ARRAY_AGG(v IGNORE NULLS)
   FROM UNNEST([
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[0]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[1]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[2]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[3]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[4]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[5]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[6]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[7]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[8]'),
     JSON_EXTRACT_SCALAR(json, '$.ref_ids[9]')]) AS v)
);

CREATE TEMP FUNCTION JsonToItem(json STRING)
RETURNS STRUCT<line STRING, ref_ids ARRAY<STRING>, sku STRING, amount INT64>
AS (
  IF(json IS NULL, NULL,
    STRUCT(
      JSON_EXTRACT_SCALAR(json, '$.line'),
      JsonExtractRefIds(json),
      JSON_EXTRACT_SCALAR(json, '$.sku'),
      CAST(JSON_EXTRACT_SCALAR(json, '$.amount') AS INT64)
    )
  )
);

CREATE TEMP FUNCTION JsonToItems(json STRING) AS (
  (SELECT AS STRUCT
    CAST(JSON_EXTRACT_SCALAR(json, '$.order_id') AS INT64) AS order_id,
    JSON_EXTRACT_SCALAR(json, '$.customer_id') AS customer_id,
    (SELECT ARRAY_AGG(v IGNORE NULLS)
     FROM UNNEST([
       JsonToItem(JSON_EXTRACT(json, '$.items[0]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[1]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[2]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[3]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[4]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[5]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[6]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[7]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[8]')),
       JsonToItem(JSON_EXTRACT(json, '$.items[9]'))]) AS v) AS items
  )
);

WITH Input AS (
  SELECT '{"order_id":"123456","customer_id":"2abcd", "items":[{"line":"1","ref_ids":["66b56e60","9e7ca2b7"],"sku":"1111","amount":40 },{"line":"2","ref_ids":["7777h0","8888j0"],"sku":"2222","amount":10 }]}' AS json
)
SELECT
  JsonToItems(json).*
FROM Input;

A little bit more brute-force version - I think easier to read and modify/adjust if needed

#standardSQL
WITH `yourTable` AS (
  SELECT '{"order_id":"123456","customer_id":"2abcd", "items":[{"line":"1","ref_ids":["66b56e60","9e7ca2b7"],"sku":"1111","amount":40 },{"line":"2","ref_ids":["7777h0","8888j0"],"sku":"2222","amount":10 }]}' AS json_blob
)
SELECT 
   JSON_EXTRACT_SCALAR(json_blob, '$.order_id') AS order_id,
   JSON_EXTRACT_SCALAR(json_blob, '$.customer_id') AS customer_id,
   ARRAY(
    SELECT STRUCT(
        JSON_EXTRACT_SCALAR(split_items, '$.line') AS line,
        SPLIT(REGEXP_REPLACE(JSON_EXTRACT (split_items, '$.ref_ids'), r'[\[\]\"]', '')) AS ref_ids,
        JSON_EXTRACT_SCALAR(split_items, '$.sku') AS sku,
        JSON_EXTRACT_SCALAR(split_items, '$.amount') AS amount
      )
    FROM (
      SELECT CONCAT('{', REGEXP_REPLACE(split_items, r'^\[{|}\]$', ''), '}') AS split_items
      FROM UNNEST(SPLIT(JSON_EXTRACT(json_blob, '$.items'), '},{')) AS split_items
    )
   ) AS items
FROM `yourTable` 

As of 1st May 2020, JSON_EXTRACT_ARRAY function has been added, and can be used to retrieve array from json.

#standardSQL
WITH `yourTable` AS (
  SELECT '{"order_id":"123456","customer_id":"2abcd", "items":[{"line":"1","ref_ids":["66b56e60","9e7ca2b7"],"sku":"1111","amount":40 },{"line":"2","ref_ids":["7777h0","8888j0"],"sku":"2222","amount":10 }]}' AS json_blob 
)
SELECT
  json_extract_scalar(json_blob,'$.order_id') AS order_id,
  json_extract_scalar(json_blob,'$.customer_id') AS customer_id,
  ARRAY(
  SELECT
    STRUCT(json_extract_scalar(split_items,'$.line') AS line,
          ARRAY(SELECT json_extract_scalar(ref_element,'$') FROM UNNEST(json_extract_array(split_items, '$.ref_ids')) ref_element) AS ref_ids,
          json_extract_scalar(split_items,'$.sku') AS sku,
          json_extract_scalar(split_items,'$.amount') AS amount 
      )
    FROM UNNEST(json_extract_array(json_blob,'$.items')) split_items 
  ) AS items
FROM
  `yourTable`

Returns:

enter image description here

To get only the type query would be:

#standardSQL
WITH `yourTable` AS (
  SELECT '{ "firstName": "John", "lastName" : "doe", "age"      : 26, "address"  : {     "streetAddress": "naist street",     "city"         : "Nara",     "postalCode"   : "630-0192" }, "phoneNumbers": [     {       "type"  : "iPhone",       "number": "0123-4567-8888"     },     {       "type"  : "home",       "number": "0123-4567-8910"     } ]}' AS json_blob 
)
  SELECT
    json_extract_scalar(split_items,'$.type') AS type FROM `yourTable`, UNNEST(json_extract_array(json_blob,'$.phoneNumbers')) split_items

returns:

enter image description here