how to convert categorical data to numerical data in weka code example
Example 1: how to convert categorical data to numerical data in python
import pandas as pd
import numpy as np
headers = ["symboling", "normalized_losses", "make", "fuel_type", "aspiration",
"num_doors", "body_style", "drive_wheels", "engine_location",
"wheel_base", "length", "width", "height", "curb_weight",
"engine_type", "num_cylinders", "engine_size", "fuel_system",
"bore", "stroke", "compression_ratio", "horsepower", "peak_rpm",
"city_mpg", "highway_mpg", "price"]
df = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data",
header=None, names=headers, na_values="?" )
df.head()
Example 2: how to convert categorical data to numerical data in python
pd.get_dummies(obj_df, columns=["body_style", "drive_wheels"], prefix=["body", "drive"]).head()