How to convert columns into one datetime column in pandas?
In version 0.18.1
you can use to_datetime
, but:
- The names of the columns have to be
year
,month
,day
,hour
,minute
andsecond
: - Minimal columns are
year
,month
andday
Sample:
import pandas as pd
df = pd.DataFrame({'year': [2015, 2016],
'month': [2, 3],
'day': [4, 5],
'hour': [2, 3],
'minute': [10, 30],
'second': [21,25]})
print df
day hour minute month second year
0 4 2 10 2 21 2015
1 5 3 30 3 25 2016
print pd.to_datetime(df[['year', 'month', 'day']])
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]
print pd.to_datetime(df[['year', 'month', 'day', 'hour']])
0 2015-02-04 02:00:00
1 2016-03-05 03:00:00
dtype: datetime64[ns]
print pd.to_datetime(df[['year', 'month', 'day', 'hour', 'minute']])
0 2015-02-04 02:10:00
1 2016-03-05 03:30:00
dtype: datetime64[ns]
print pd.to_datetime(df)
0 2015-02-04 02:10:21
1 2016-03-05 03:30:25
dtype: datetime64[ns]
Another solution is convert to dictionary
:
print df
M D Y Apples Oranges
0 5 6 1990 12 3
1 5 7 1990 14 4
2 5 8 1990 15 34
3 5 9 1990 23 21
print pd.to_datetime(dict(year=df.Y, month=df.M, day=df.D))
0 1990-05-06
1 1990-05-07
2 1990-05-08
3 1990-05-09
dtype: datetime64[ns]
In 0.13 (coming very soon), this is heavily optimized and quite fast (but still pretty fast in 0.12); both orders of magnitude faster than looping
In [3]: df
Out[3]:
M D Y Apples Oranges
0 5 6 1990 12 3
1 5 7 1990 14 4
2 5 8 1990 15 34
3 5 9 1990 23 21
In [4]: df.dtypes
Out[4]:
M int64
D int64
Y int64
Apples int64
Oranges int64
dtype: object
# in 0.12, use this
In [5]: pd.to_datetime((df.Y*10000+df.M*100+df.D).apply(str),format='%Y%m%d')
# in 0.13 the above or this will work
In [5]: pd.to_datetime(df.Y*10000+df.M*100+df.D,format='%Y%m%d')
Out[5]:
0 1990-05-06 00:00:00
1 1990-05-07 00:00:00
2 1990-05-08 00:00:00
3 1990-05-09 00:00:00
dtype: datetime64[ns]