How to convert dataframe to dictionary in pandas WITHOUT index
if its just 1 column, slice the 1 column (it gets converted to Series) wrapping in a dict function
dict( myDF.iloc[:, -1] )
# [: , -1] means: return all rows, return last column)
{Jason: 25.1}
you can do something like this:
data.to_dict('list')
#output:
#{'Feeling low in energy-slowed down': [2, 4, 2, 4]}
When I see your dataset with 2 columns I see a series and not a dataframe.
Try this: d = df.set_index('name')['coverage'].to_dict()
which will convert your dataframe to a series and output that.
However, if your intent is to have more columns and not a common key you could store them in an array instead using 'records'. d = df.to_dict('r')
.
`
Runnable code:
import pandas as pd
df = pd.DataFrame({
'name': ['Jason'],
'coverage': [25.1]
})
print(df.to_dict())
print(df.set_index('name')['coverage'].to_dict())
print(df.to_dict('r'))
Returns:
{'name': {0: 'Jason'}, 'coverage': {0: 25.1}}
{'Jason': 25.1}
[{'name': 'Jason', 'coverage': 25.1}]
And one more thing, try to avoid to use variable name dict as it is reserved.
dict1 = df.to_dict('records')
or
dict2 = df.to_dict('list')
list
: keys are column names, values are lists of column data
records
: each row becomes a dictionary where key is column name and value is the data in the cell