How to convert list of dictionaries into Pyspark DataFrame
In the past, you were able to simply pass a dictionary to spark.createDataFrame()
, but this is now deprecated:
mylist = [
{"type_activity_id":1,"type_activity_name":"xxx"},
{"type_activity_id":2,"type_activity_name":"yyy"},
{"type_activity_id":3,"type_activity_name":"zzz"}
]
df = spark.createDataFrame(mylist)
#UserWarning: inferring schema from dict is deprecated,please use pyspark.sql.Row instead
# warnings.warn("inferring schema from dict is deprecated,"
As this warning message says, you should use pyspark.sql.Row
instead.
from pyspark.sql import Row
spark.createDataFrame(Row(**x) for x in mylist).show(truncate=False)
#+----------------+------------------+
#|type_activity_id|type_activity_name|
#+----------------+------------------+
#|1 |xxx |
#|2 |yyy |
#|3 |zzz |
#+----------------+------------------+
Here I used **
(keyword argument unpacking) to pass the dictionaries to the Row
constructor.
You can do it like this. You will get a dataframe with 2 columns.
mylist = [
{"type_activity_id":1,"type_activity_name":"xxx"},
{"type_activity_id":2,"type_activity_name":"yyy"},
{"type_activity_id":3,"type_activity_name":"zzz"}
]
myJson = sc.parallelize(mylist)
myDf = sqlContext.read.json(myJson)
Output :
+----------------+------------------+
|type_activity_id|type_activity_name|
+----------------+------------------+
| 1| xxx|
| 2| yyy|
| 3| zzz|
+----------------+------------------+