How to convert list of model objects to pandas dataframe?

Just use:

DataFrame([o.__dict__ for o in my_objs])

Full example:

import pandas as pd

# define some class
class SomeThing:
    def __init__(self, x, y):
        self.x, self.y = x, y

# make an array of the class objects
things = [SomeThing(1,2), SomeThing(3,4), SomeThing(4,5)]

# fill dataframe with one row per object, one attribute per column
df = pd.DataFrame([t.__dict__ for t in things ])

print(df)

This prints:

   x  y
0  1  2
1  3  4
2  4  5

A much cleaner way to to this is to define a to_dict method on your class and then use pandas.DataFrame.from_records

class Signal(object):
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def to_dict(self):
        return {
            'x': self.x,
            'y': self.y,
        }

e.g.

In [87]: signals = [Signal(3, 9), Signal(4, 16)]

In [88]: pandas.DataFrame.from_records([s.to_dict() for s in signals])
Out[88]:
   x   y
0  3   9
1  4  16