How to count TRUE values in a logical vector
Another option which hasn't been mentioned is to use which
:
length(which(z))
Just to actually provide some context on the "which is faster question", it's always easiest just to test yourself. I made the vector much larger for comparison:
z <- sample(c(TRUE,FALSE),1000000,rep=TRUE)
system.time(sum(z))
user system elapsed
0.03 0.00 0.03
system.time(length(z[z==TRUE]))
user system elapsed
0.75 0.07 0.83
system.time(length(which(z)))
user system elapsed
1.34 0.28 1.64
system.time(table(z)["TRUE"])
user system elapsed
10.62 0.52 11.19
So clearly using sum
is the best approach in this case. You may also want to check for NA
values as Marek suggested.
Just to add a note regarding NA values and the which
function:
> which(c(T, F, NA, NULL, T, F))
[1] 1 4
> which(!c(T, F, NA, NULL, T, F))
[1] 2 5
Note that which only checks for logical TRUE
, so it essentially ignores non-logical values.
The safest way is to use sum
with na.rm = TRUE
:
sum(z, na.rm = TRUE) # best way to count TRUE values
which gives 1.
There are some problems with other solutions when logical vector contains NA
values.
See for example:
z <- c(TRUE, FALSE, NA)
sum(z) # gives you NA
table(z)["TRUE"] # gives you 1
length(z[z == TRUE]) # f3lix answer, gives you 2 (because NA indexing returns values)
Additionally table
solution is less efficient (look at the code of table
function).
Also, you should be careful with the "table" solution, in case there are no TRUE values in the logical vector. See for example:
z <- c(FALSE, FALSE)
table(z)["TRUE"] # gives you `NA`
or
z <- c(NA, FALSE)
table(z)["TRUE"] # gives you `NA`