How to create a new data frame based on conditions from another data frame

In the current version of Pandas, the .ix has deprecated; instead, use .loc.

temp_df = df_complete.loc[]

I think you need boolean indexing with loc for selecting only columns col a and col c:

temp_df = df_complete.loc[(df_complete['type'] == 'NDD') & 
                         (df_complete['writer'] == 'Mary') & 
                         (df_complete['status'] != '7'), ['col a','col c']]
#rename columns
temp_df = temp_df.rename(columns={'col a':'col A','col c':'col C'})
#add new column 
temp_df['col B'] = 'good'
#reorder columns
temp_df = temp_df[['col A','col B','col C']]

Sample:

df_complete = pd.DataFrame({'type':  ['NDD','NDD','NT'],
                            'writer':['Mary','Mary','John'],
                            'status':['4','5','6'],
                            'col a': [1,3,5],
                            'col b': [5,3,6],
                            'col c': [7,4,3]}, index=[3,4,5])

print (df_complete)
   col a  col b  col c status type writer
3      1      5      7      4  NDD   Mary
4      3      3      4      5  NDD   Mary
5      5      6      3      6   NT   John

temp_df = df_complete.loc[(df_complete['type'] == 'NDD') & 
                         (df_complete['writer'] == 'Mary') & 
                         (df_complete['status'] != '7'), ['col a','col c']]

print (temp_df)  
   col a  col c
3      1      7
4      3      4

temp_df = temp_df.rename(columns={'col a':'col A','col c':'col C'})
#add new column 
temp_df['col B'] = 'good'
#reorder columns
temp_df = temp_df[['col A','col B','col C']]
print (temp_df)  
   col A col B  col C
3      1  good      7
4      3  good      4