How to detect subscript numbers in an image using OCR?

This is because the font of subscript is too small. You could resize the image using a python package such as cv2 or PIL and use the resized image for OCR as coded below.

import pytesseract
import cv2

img = cv2.imread('test.jpg')
img = cv2.resize(img, None, fx=2, fy=2)  # scaling factor = 2

data = pytesseract.image_to_string(img)
print(data)

OUTPUT:

CH3

I think this way can be more suitable for the general situation.

import cv2
import pytesseract
from pathlib import Path

image = cv2.imread('test.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]  # (suitable for sharper black and white pictures
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]  # is OpenCV2.4 or OpenCV3
result_list = []
for c in contours:
    x, y, w, h = cv2.boundingRect(c)
    area = cv2.contourArea(c)
    if area > 200:
        detect_area = image[y:y + h, x:x + w]
        # detect_area = cv2.GaussianBlur(detect_area, (3, 3), 0)
        predict_char = pytesseract.image_to_string(detect_area, lang='eng', config='--oem 0 --psm 10')
        result_list.append((x, predict_char))
        cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), thickness=2)

result = ''.join([char for _, char in sorted(result_list, key=lambda _x: _x[0])])
print(result)  # CH3


output_dir = Path('./temp')
output_dir.mkdir(parents=True, exist_ok=True)
cv2.imwrite(f"{output_dir/Path('image.png')}", image)
cv2.imwrite(f"{output_dir/Path('clean.png')}", thresh)

MORE REFERENCE

I strongly suggest you refer to the following examples, which is a useful reference for OCR.

  1. Get the location of all text present in image using opencv
  2. Using YOLO or other image recognition techniques to identify all alphanumeric text present in images

enter image description here


You want to do apply pre-processing to your image before feeding it into tesseract to increase the accuracy of the OCR. I use a combination of PIL and cv2 to do this here because cv2 has good filters for blur/noise removal (dilation, erosion, threshold) and PIL makes it easy to enhance the contrast (distinguish the text from the background) and I wanted to show how pre-processing could be done using either... (use of both together is not 100% necessary though, as shown below). You can write this more elegantly- it's just the general idea.

import cv2
import pytesseract
import numpy as np
from PIL import Image, ImageEnhance


img = cv2.imread('test.jpg')

def cv2_preprocess(image_path):
  img = cv2.imread(image_path)

  # convert to black and white if not already
  img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

  # remove noise
  kernel = np.ones((1, 1), np.uint8)
  img = cv2.dilate(img, kernel, iterations=1)
  img = cv2.erode(img, kernel, iterations=1)

  # apply a blur 
  # gaussian noise
  img = cv2.threshold(cv2.GaussianBlur(img, (9, 9), 0), 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]

  # this can be used for salt and pepper noise (not necessary here)
  #img = cv2.adaptiveThreshold(cv2.medianBlur(img, 7), 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 2)

  cv2.imwrite('new.jpg', img)
  return 'new.jpg'

def pil_enhance(image_path):
  image = Image.open(image_path)
  contrast = ImageEnhance.Contrast(image)
  contrast.enhance(2).save('new2.jpg')
  return 'new2.jpg'


img = cv2.imread(pil_enhance(cv2_preprocess('test.jpg')))


text = pytesseract.image_to_string(img)
print(text)

Output:

CH3

The cv2 pre-process produces an image that looks like this: enter image description here

The enhancement with PIL gives you:

enter image description here

In this specific example, you can actually stop after the cv2_preprocess step because that is clear enough for the reader:

img = cv2.imread(cv2_preprocess('test.jpg'))
text = pytesseract.image_to_string(img)
print(text)

output:

CH3

But if you are working with things that don't necessarily start with a white background (i.e. grey scaling converts to light grey instead of white)- I have found the PIL step really helps there.

Main point is the methods to increase accuracy of the tesseract typically are:

  1. fix DPI (rescaling)
  2. fix brightness/noise of image
  3. fix tex size/lines (skewing/warping text)

Doing one of these or all three of them will help... but the brightness/noise can be more generalizable than the other two (at least from my experience).