How to determine whether this function is differentiable at a point?
The derivative at $0$ is given by the limit
$$\begin{align} f'(0)&=\lim_{h\to 0}\frac{f(h)-f(0)}{h}\\\\ &=\lim_{h\to 0}\frac{f(h)}{h} \end{align}$$
if this limit exists. If $h>0$, then
$$\begin{align} f'(0)&=\lim_{h\to 0^+}\frac{\frac{h}{1+h}}{h}\\\\ &=1 \end{align}$$
If $h<0$, then
$$\begin{align} f'(0)&=\lim_{h\to 0^-}\frac{h^2}{h}\\\\ &=0 \end{align}$$
The right-side and left-side limits are not equal. Therefore, the derivative at $0$ does not exist.