How to display custom images in TensorBoard using Keras?

I'm trying to display matplotlib plots to the tensorboard (useful incases of plotting statistics, heatmaps, etc). It can be used for the general case also.

class AttentionLogger(keras.callbacks.Callback):
        def __init__(self, val_data, logsdir):
            super(AttentionLogger, self).__init__()
            self.logsdir = logsdir  # where the event files will be written 
            self.validation_data = val_data # validation data generator
            self.writer = tf.summary.FileWriter(self.logsdir)  # creating the summary writer

        @tfmpl.figure_tensor
        def attention_matplotlib(self, gen_images): 
            '''
            Creates a matplotlib figure and writes it to tensorboard using tf-matplotlib
            gen_images: The image tensor of shape (batchsize,width,height,channels) you want to write to tensorboard
            '''  
            r, c = 5,5  # want to write 25 images as a 5x5 matplotlib subplot in TBD (tensorboard)
            figs = tfmpl.create_figures(1, figsize=(15,15))
            cnt = 0
            for idx, f in enumerate(figs):
                for i in range(r):
                    for j in range(c):    
                        ax = f.add_subplot(r,c,cnt+1)
                        ax.set_yticklabels([])
                        ax.set_xticklabels([])
                        ax.imshow(gen_images[cnt])  # writes the image at index cnt to the 5x5 grid
                        cnt+=1
                f.tight_layout()
            return figs

        def on_train_begin(self, logs=None):  # when the training begins (run only once)
                image_summary = [] # creating a list of summaries needed (can be scalar, images, histograms etc)
                for index in range(len(self.model.output)):  # self.model is accessible within callback
                    img_sum = tf.summary.image('img{}'.format(index), self.attention_matplotlib(self.model.output[index]))                    
                    image_summary.append(img_sum)
                self.total_summary = tf.summary.merge(image_summary)

        def on_epoch_end(self, epoch, logs = None):   # at the end of each epoch run this
            logs = logs or {} 
            x,y = next(self.validation_data)  # get data from the generator
            # get the backend session and sun the merged summary with appropriate feed_dict
            sess_run_summary = K.get_session().run(self.total_summary, feed_dict = {self.model.input: x['encoder_input']})
            self.writer.add_summary(sess_run_summary, global_step =epoch)  #finally write the summary!

Then you will have to give it as an argument to fit/fit_generator

#val_generator is the validation data generator
callback_image = AttentionLogger(logsdir='./tensorboard', val_data=val_generator)
... # define the model and generators

# autoencoder is the model, note how callback is suppiled to fit_generator
autoencoder.fit_generator(generator=train_generator,
                    validation_data=val_generator,
                    callbacks=callback_image)

In my case where I'm displaying attention maps (as heatmaps) to tensorboard, this is the output.

tensorboard


Similarily, you might want to try tf-matplotlib. Here's a scatter plot

import tensorflow as tf
import numpy as np

import tfmpl

@tfmpl.figure_tensor
def draw_scatter(scaled, colors): 
    '''Draw scatter plots. One for each color.'''  
    figs = tfmpl.create_figures(len(colors), figsize=(4,4))
    for idx, f in enumerate(figs):
        ax = f.add_subplot(111)
        ax.axis('off')
        ax.scatter(scaled[:, 0], scaled[:, 1], c=colors[idx])
        f.tight_layout()

    return figs

with tf.Session(graph=tf.Graph()) as sess:

    # A point cloud that can be scaled by the user
    points = tf.constant(
        np.random.normal(loc=0.0, scale=1.0, size=(100, 2)).astype(np.float32)
    )
    scale = tf.placeholder(tf.float32)        
    scaled = points*scale

    # Note, `scaled` above is a tensor. Its being passed `draw_scatter` below. 
    # However, when `draw_scatter` is invoked, the tensor will be evaluated and a
    # numpy array representing its content is provided.   
    image_tensor = draw_scatter(scaled, ['r', 'g'])
    image_summary = tf.summary.image('scatter', image_tensor)      
    all_summaries = tf.summary.merge_all() 

    writer = tf.summary.FileWriter('log', sess.graph)
    summary = sess.run(all_summaries, feed_dict={scale: 2.})
    writer.add_summary(summary, global_step=0)

When executed, this results in the following plot inside Tensorboard

Note that tf-matplotlib takes care about evaluating any tensor inputs, avoids pyplot threading issues and supports blitting for runtime critical plotting.


Based on the above answers and my own searching, I provide the following code to finish the following things using TensorBoard in Keras:


  • problem setup: to predict the disparity map in binocular stereo matching;
  • to feeds the model with input left image x and ground truth disparity map gt;
  • to display the input x and ground truth 'gt', at some iteration time;
  • to display the output y of your model, at some iteration time.

  1. First of all, you have to make your costumed callback class with Callback. Note that a callback has access to its associated model through the class property self.model. Also Note: you have to feed the input to the model with feed_dict, if you want to get and display the output of your model.

    from keras.callbacks import Callback
    import numpy as np
    from keras import backend as K
    import tensorflow as tf
    import cv2
    
    # make the 1 channel input image or disparity map look good within this color map. This function is not necessary for this Tensorboard problem shown as above. Just a function used in my own research project.
    def colormap_jet(img):
        return cv2.cvtColor(cv2.applyColorMap(np.uint8(img), 2), cv2.COLOR_BGR2RGB)
    
    class customModelCheckpoint(Callback):
        def __init__(self, log_dir='./logs/tmp/', feed_inputs_display=None):
              super(customModelCheckpoint, self).__init__()
              self.seen = 0
              self.feed_inputs_display = feed_inputs_display
              self.writer = tf.summary.FileWriter(log_dir)
    
        # this function will return the feeding data for TensorBoard visualization;
        # arguments:
        #  * feed_input_display : [(input_yourModelNeed, left_image, disparity_gt ), ..., (input_yourModelNeed, left_image, disparity_gt), ...], i.e., the list of tuples of Numpy Arrays what your model needs as input and what you want to display using TensorBoard. Note: you have to feed the input to the model with feed_dict, if you want to get and display the output of your model. 
        def custom_set_feed_input_to_display(self, feed_inputs_display):
              self.feed_inputs_display = feed_inputs_display
    
        # copied from the above answers;
        def make_image(self, numpy_img):
              from PIL import Image
              height, width, channel = numpy_img.shape
              image = Image.fromarray(numpy_img)
              import io
              output = io.BytesIO()
              image.save(output, format='PNG')
              image_string = output.getvalue()
              output.close()
              return tf.Summary.Image(height=height, width=width, colorspace= channel, encoded_image_string=image_string)
    
    
        # A callback has access to its associated model through the class property self.model.
        def on_batch_end(self, batch, logs = None):
              logs = logs or {} 
              self.seen += 1
              if self.seen % 200 == 0: # every 200 iterations or batches, plot the costumed images using TensorBorad;
                  summary_str = []
                  for i in range(len(self.feed_inputs_display)):
                      feature, disp_gt, imgl = self.feed_inputs_display[i]
                      disp_pred = np.squeeze(K.get_session().run(self.model.output, feed_dict = {self.model.input : feature}), axis = 0)
                      #disp_pred = np.squeeze(self.model.predict_on_batch(feature), axis = 0)
                      summary_str.append(tf.Summary.Value(tag= 'plot/img0/{}'.format(i), image= self.make_image( colormap_jet(imgl)))) # function colormap_jet(), defined above;
                      summary_str.append(tf.Summary.Value(tag= 'plot/disp_gt/{}'.format(i), image= self.make_image( colormap_jet(disp_gt))))
                      summary_str.append(tf.Summary.Value(tag= 'plot/disp/{}'.format(i), image= self.make_image( colormap_jet(disp_pred))))
    
                  self.writer.add_summary(tf.Summary(value = summary_str), global_step =self.seen)
    
  2. Next, pass this callback object to fit_generator() for your model, like:

       feed_inputs_4_display = some_function_you_wrote()
       callback_mc = customModelCheckpoint( log_dir = log_save_path, feed_inputd_display = feed_inputs_4_display)
       # or 
       callback_mc.custom_set_feed_input_to_display(feed_inputs_4_display)
       yourModel.fit_generator(... callbacks = callback_mc)
       ...
    
  3. Now your can run the code, and go the TensorBoard host to see the costumed image display. For example, this is what I got using the aforementioned code: enter image description here


    Done! Enjoy!


So, the following solution works well for me:

import tensorflow as tf

def make_image(tensor):
    """
    Convert an numpy representation image to Image protobuf.
    Copied from https://github.com/lanpa/tensorboard-pytorch/
    """
    from PIL import Image
    height, width, channel = tensor.shape
    image = Image.fromarray(tensor)
    import io
    output = io.BytesIO()
    image.save(output, format='PNG')
    image_string = output.getvalue()
    output.close()
    return tf.Summary.Image(height=height,
                         width=width,
                         colorspace=channel,
                         encoded_image_string=image_string)

class TensorBoardImage(keras.callbacks.Callback):
    def __init__(self, tag):
        super().__init__() 
        self.tag = tag

    def on_epoch_end(self, epoch, logs={}):
        # Load image
        img = data.astronaut()
        # Do something to the image
        img = (255 * skimage.util.random_noise(img)).astype('uint8')

        image = make_image(img)
        summary = tf.Summary(value=[tf.Summary.Value(tag=self.tag, image=image)])
        writer = tf.summary.FileWriter('./logs')
        writer.add_summary(summary, epoch)
        writer.close()

        return

tbi_callback = TensorBoardImage('Image Example')

Just pass the callback to fit or fit_generator.

Note that you can also run some operations using the model inside the callback. For example, you may run the model on some images to check its performance.

screen