How to display pandas DataFrame of floats using a format string for columns?

Similar to unutbu above, you could also use applymap as follows:

import pandas as pd
df = pd.DataFrame([123.4567, 234.5678, 345.6789, 456.7890],
                  index=['foo','bar','baz','quux'],
                  columns=['cost'])

df = df.applymap("${0:.2f}".format)

As of Pandas 0.17 there is now a styling system which essentially provides formatted views of a DataFrame using Python format strings:

import pandas as pd
import numpy as np

constants = pd.DataFrame([('pi',np.pi),('e',np.e)],
                   columns=['name','value'])
C = constants.style.format({'name': '~~ {} ~~', 'value':'--> {:15.10f} <--'})
C

which displays

enter image description here

This is a view object; the DataFrame itself does not change formatting, but updates in the DataFrame are reflected in the view:

constants.name = ['pie','eek']
C

enter image description here

However it appears to have some limitations:

  • Adding new rows and/or columns in-place seems to cause inconsistency in the styled view (doesn't add row/column labels):

    constants.loc[2] = dict(name='bogus', value=123.456)
    constants['comment'] = ['fee','fie','fo']
    constants
    

enter image description here

which looks ok but:

C

enter image description here

  • Formatting works only for values, not index entries:

    constants = pd.DataFrame([('pi',np.pi),('e',np.e)],
                   columns=['name','value'])
    constants.set_index('name',inplace=True)
    C = constants.style.format({'name': '~~ {} ~~', 'value':'--> {:15.10f} <--'})
    C
    

enter image description here


If you don't want to modify the dataframe, you could use a custom formatter for that column.

import pandas as pd
pd.options.display.float_format = '${:,.2f}'.format
df = pd.DataFrame([123.4567, 234.5678, 345.6789, 456.7890],
                  index=['foo','bar','baz','quux'],
                  columns=['cost'])


print df.to_string(formatters={'cost':'${:,.2f}'.format})

yields

        cost
foo  $123.46
bar  $234.57
baz  $345.68
quux $456.79

import pandas as pd
pd.options.display.float_format = '${:,.2f}'.format
df = pd.DataFrame([123.4567, 234.5678, 345.6789, 456.7890],
                  index=['foo','bar','baz','quux'],
                  columns=['cost'])
print(df)

yields

        cost
foo  $123.46
bar  $234.57
baz  $345.68
quux $456.79

but this only works if you want every float to be formatted with a dollar sign.

Otherwise, if you want dollar formatting for some floats only, then I think you'll have to pre-modify the dataframe (converting those floats to strings):

import pandas as pd
df = pd.DataFrame([123.4567, 234.5678, 345.6789, 456.7890],
                  index=['foo','bar','baz','quux'],
                  columns=['cost'])
df['foo'] = df['cost']
df['cost'] = df['cost'].map('${:,.2f}'.format)
print(df)

yields

         cost       foo
foo   $123.46  123.4567
bar   $234.57  234.5678
baz   $345.68  345.6789
quux  $456.79  456.7890