How to execute Spark programs with Dynamic Resource Allocation?
In Spark dynamic allocation spark.dynamicAllocation.enabled
needs to be set to true
because it's false
by default.
This requires spark.shuffle.service.enabled
to be set to true
, as spark application is running on YARN. Check this link to start the shuffle service on each NodeManager in YARN.
The following configurations are also relevant:
spark.dynamicAllocation.minExecutors,
spark.dynamicAllocation.maxExecutors, and
spark.dynamicAllocation.initialExecutors
These options can be configured to Spark application in 3 ways
1. From Spark submit with --conf <prop_name>=<prop_value>
spark-submit --master yarn-cluster \
--driver-cores 2 \
--driver-memory 2G \
--num-executors 10 \
--executor-cores 5 \
--executor-memory 2G \
--conf spark.dynamicAllocation.minExecutors=5 \
--conf spark.dynamicAllocation.maxExecutors=30 \
--conf spark.dynamicAllocation.initialExecutors=10 \ # same as --num-executors 10
--class com.spark.sql.jdbc.SparkDFtoOracle2 \
Spark-hive-sql-Dataframe-0.0.1-SNAPSHOT-jar-with-dependencies.jar
2. Inside Spark program with SparkConf
Set the properties in SparkConf
then create SparkSession
or SparkContext
with it
val conf: SparkConf = new SparkConf()
conf.set("spark.dynamicAllocation.minExecutors", "5");
conf.set("spark.dynamicAllocation.maxExecutors", "30");
conf.set("spark.dynamicAllocation.initialExecutors", "10");
.....
3. spark-defaults.conf
usually located in $SPARK_HOME/conf/
Place the same configurations in spark-defaults.conf
to apply for all spark applications if no configuration is passed from command-line as well as code.
Spark - Dynamic Allocation Confs