How to explode multiple columns of a dataframe in pyspark

PySpark has added an arrays_zip function in 2.4, which eliminates the need for a Python UDF to zip the arrays.

import pyspark.sql.functions as F
from pyspark.sql.types import *

df = sql.createDataFrame(
    [(['Bob'], [16], ['Maths','Physics','Chemistry'], ['A','B','C'])],
    ['Name','Age','Subjects', 'Grades'])
df = df.withColumn("new", F.arrays_zip("Subjects", "Grades"))\
       .withColumn("new", F.explode("new"))\
       .select("Name", "Age", F.col("new.Subjects").alias("Subjects"), F.col("new.Grades").alias("Grades"))
df.show()

+-----+----+---------+------+
| Name| Age| Subjects|Grades|
+-----+----+---------+------+
|[Bob]|[16]|    Maths|     A|
|[Bob]|[16]|  Physics|     B|
|[Bob]|[16]|Chemistry|     C|
+-----+----+---------+------+

Arriving late to the party :-)

The simplest way to go is by using inline that doesn't have python API but is supported by selectExpr.

df.selectExpr('Name[0] as Name','Age[0] as Age','inline(arrays_zip(Subjects,Grades))').show()

+----+---+---------+------+
|Name|Age| Subjects|Grades|
+----+---+---------+------+
| Bob| 16|    Maths|     A|
| Bob| 16|  Physics|     B|
| Bob| 16|Chemistry|     C|
+----+---+---------+------+

This works,

import pyspark.sql.functions as F
from pyspark.sql.types import *

df = sql.createDataFrame(
    [(['Bob'], [16], ['Maths','Physics','Chemistry'], ['A','B','C'])],
    ['Name','Age','Subjects', 'Grades'])
df.show()

+-----+----+--------------------+---------+
| Name| Age|            Subjects|   Grades|
+-----+----+--------------------+---------+
|[Bob]|[16]|[Maths, Physics, ...|[A, B, C]|
+-----+----+--------------------+---------+

Use udf with zip. Those columns needed to explode have to be merged before exploding.

combine = F.udf(lambda x, y: list(zip(x, y)),
              ArrayType(StructType([StructField("subs", StringType()),
                                    StructField("grades", StringType())])))

df = df.withColumn("new", combine("Subjects", "Grades"))\
       .withColumn("new", F.explode("new"))\
       .select("Name", "Age", F.col("new.subs").alias("Subjects"), F.col("new.grades").alias("Grades"))
df.show()


+-----+----+---------+------+
| Name| Age| Subjects|Grades|
+-----+----+---------+------+
|[Bob]|[16]|    Maths|     A|
|[Bob]|[16]|  Physics|     B|
|[Bob]|[16]|Chemistry|     C|
+-----+----+---------+------+