how to find accuracy score in sklearn for regression code example

Example 1: accuracy score sklearn syntax

>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2

Example 2: how to find the accuracy of linear regression model

# Simple Linear Regression
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Salary_Data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
# Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1/3, random_state = 42)
# Fitting Simple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# Predicting the Test set results
y_pred = regressor.predict(X_test)
print('Coefficients: \n', regressor.coef_)
# The mean squared error
print("Mean squared error: %.2f" % np.mean((regressor.predict(X_test) - y_test) ** 2))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % regressor.score(X_test, y_test))