How to find and count the points that are elements of $\{(x,y)\in\mathbb{Z}^2:x^2+y^2\le16 \wedge |y|\gt x\}$?
Just solve it:
sol = Solve[x^2 + y^2 <= 16 && Abs[y] > x, {x, y}, Integers];
Get how many:
Length@sol
Make the points (set point size or use Disk
if you want bigger):
gr = Graphics[{Red, Point[{x, y}] /. sol}];
Then show them together:
Show[{Plot[{y /. Solve[x^2 + y^2 == 16, y], x, -x}, {x, -5, 5},
PlotStyle -> {Solid, Dashed, Dashed}, AspectRatio -> 1,
PlotRange -> {{-5, 5}, {-5, 5}}, PlotTheme -> "Detailed",
GridLines -> {{-4, -3, -2, -1, 0, 1, 2, 3, 4}, {-4, -3, -2, -1, 0,
1, 2, 3, 4}}], gr}]
Here is one way to do it.
grid = Catenate @ CoordinateBoundsArray[{{-4, 4}, {-4, 4}}];
belongsQ[{x_, y_}] := x^2 + y^2 <= 16 && Abs[y] > x
pts = Pick[grid, belongsQ /@ grid];
Length[pts]
34
Plot[{y /. Solve[x^2 + y^2 == 16, y], x, -x}, {x, -5, 5},
PlotStyle -> {Automatic, Dashed, Dashed},
AspectRatio -> 1,
PlotRange -> {{-5, 5}, {-5, 5}},
PlotTheme -> "Detailed",
PlotLegends -> False,
GridLines -> {{-4, -3, -2, -1, 0, 1, 2, 3, 4}, {-4, -3, -2, -1, 0, 1, 2, 3, 4}},
Epilog -> {Red, AbsolutePointSize[5], Point[pts]}]
plot1 = Plot[{y /. Solve[x^2 + y^2 == 16, y], x, -x}, {x, -5, 5},
PlotStyle -> {Automatic, Dashed, Dashed}, AspectRatio -> 1,
PlotRange -> {{-5, 5}, {-5, 5}}, PlotTheme -> "Detailed",
GridLines -> {{-4, -3, -2, -1, 0, 1, 2, 3, 4}, {-4, -3, -2, -1, 0,
1, 2, 3, 4}}]
This shot works:
pts = {x, y} /. FindInstance[x^2 + y^2 <= 16 && Abs[y] > x, {x, y}, Integers, 100]
(* 100 was chosen big enough to have all points found *)
plot2 = ListPlot[pts, PlotStyle -> {Red, PointSize[Large]}];
Show[plot1, plot2]
Length@pts
34