How to find limit of the sequence $\sum\limits_{k=1}^n\frac{1}{\sqrt {n^2 +kn}}$?
HINT:
$$\int _a^b {f(x) dx}=\lim_{n\to\infty} \frac{b-a}{n}\sum \limits_{k=1}^n f\left(a+\frac{k(b-a)}{n}\right) \tag 1$$
$$\lim_{n\to\infty}\displaystyle\sum_{k=1}^n\frac{1}{\sqrt {n^2 +kn}} =\lim_{n\to\infty} \frac{1}{n}\displaystyle\sum_{k=1}^n\frac{1}{\sqrt {1 +k\frac{1}{n}}} \tag 2$$
Can you proceed after that?