How to get rid of multilevel index after using pivot table pandas?

You need remove only index name, use rename_axis (new in pandas 0.18.0):

print (reshaped_df)
sale_product_id  1    8    52   312  315
sale_user_id                            
1                  1    1    1    5    1

print (reshaped_df.index.name)
sale_user_id

print (reshaped_df.rename_axis(None))
sale_product_id  1    8    52   312  315
1                  1    1    1    5    1

Another solution working in pandas below 0.18.0:

reshaped_df.index.name = None
print (reshaped_df)

sale_product_id  1    8    52   312  315
1                  1    1    1    5    1

If need remove columns name also:

print (reshaped_df.columns.name)
sale_product_id

print (reshaped_df.rename_axis(None).rename_axis(None, axis=1))
   1    8    52   312  315
1    1    1    1    5    1

Another solution:

reshaped_df.columns.name = None
reshaped_df.index.name = None
print (reshaped_df)
   1    8    52   312  315
1    1    1    1    5    1

EDIT by comment:

You need reset_index with parameter drop=True:

reshaped_df = reshaped_df.reset_index(drop=True)
print (reshaped_df)
sale_product_id  1    8    52   312  315
0                  1    1    1    5    1

#if need reset index nad remove column name
reshaped_df = reshaped_df.reset_index(drop=True).rename_axis(None, axis=1)
print (reshaped_df)
   1    8    52   312  315
0    1    1    1    5    1

Of if need remove only column name:

reshaped_df = reshaped_df.rename_axis(None, axis=1)
print (reshaped_df)
              1    8    52   312  315
sale_user_id                         
1               1    1    1    5    1

Edit1:

So if need create new column from index and remove columns names:

reshaped_df =  reshaped_df.rename_axis(None, axis=1).reset_index() 
print (reshaped_df)
   sale_user_id  1  8  52  312  315
0             1  1  1   1    5    1

Make a DataFrame

import random

d = {'Country': ['Afghanistan','Albania','Algeria','Andorra','Angola']*2, 
     'Year': [2005]*5 + [2006]*5, 'Value': random.sample(range(1,20),10)}
df = pd.DataFrame(data=d)

df:

                Country         Year   Value    
1               Afghanistan     2005    6
2               Albania         2005    13
3               Algeria         2005    10
4               Andorra         2005    11
5               Angola          2005    5
6               Afghanistan     2006    3
7               Albania         2006    2
8               Algeria         2006    7
9               Andorra         2006    3
10              Angola          2006    6

Pivot

table = df.pivot(index='Country',columns='Year',values='Value')

Table:

Year    Country         2005    2006
0       Afghanistan     16      9
1       Albania         17      19
2       Algeria         11      7
3       Andorra         5       12
4       Angola          6       18

I want 'Year' to be 'index':

clean_tbl = table.rename_axis(None, axis=1).reset_index(drop=True)

clean_tbl:

    Country         2005    2006
0   Afghanistan     16      9
1   Albania         17      19
2   Algeria         11      7
3   Andorra         5       12
4   Angola          6       18

Done!