How to get the most frequent row in table
Check groupby
df.groupby(df.columns.tolist()).size().sort_values().tail(1).reset_index().drop(0,1)
col_1 col_2 col_3
0 1 1 A
With NumPy's np.unique
-
In [92]: u,idx,c = np.unique(df.values.astype(str), axis=0, return_index=True, return_counts=True)
In [99]: df.iloc[[idx[c.argmax()]]]
Out[99]:
col_1 col_2 col_3
0 1 1 A
If you are looking for performance, convert the string column to numeric and then use np.unique
-
a = np.c_[df.col_1, df.col_2, pd.factorize(df.col_3)[0]]
u,idx,c = np.unique(a, axis=0, return_index=True, return_counts=True)