How to get the ThreadPoolExecutor to increase threads to max before queueing?
I've already got two other answers on this question, but I suspect this one is the best.
It's based on the technique of the currently accepted answer, namely:
- Override the queue's
offer()
method to (sometimes) return false, - which causes the
ThreadPoolExecutor
to either spawn a new thread or reject the task, and - set the
RejectedExecutionHandler
to actually queue the task on rejection.
The problem is when offer()
should return false. The currently accepted answer returns false when the queue has a couple of tasks on it, but as I've pointed out in my comment there, this causes undesirable effects. Alternately, if you always return false, you'll keep spawning new threads even when you have threads waiting on the queue.
The solution is to use Java 7 LinkedTransferQueue
and have offer()
call tryTransfer()
. When there is a waiting consumer thread the task will just get passed to that thread. Otherwise, offer()
will return false and the ThreadPoolExecutor
will spawn a new thread.
BlockingQueue<Runnable> queue = new LinkedTransferQueue<Runnable>() {
@Override
public boolean offer(Runnable e) {
return tryTransfer(e);
}
};
ThreadPoolExecutor threadPool = new ThreadPoolExecutor(1, 50, 60, TimeUnit.SECONDS, queue);
threadPool.setRejectedExecutionHandler(new RejectedExecutionHandler() {
@Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
try {
executor.getQueue().put(r);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
});
Note: I now prefer and recommend my other answer.
Here's a version which feels to me much more straightforward: Increase the corePoolSize (up to the limit of maximumPoolSize) whenever a new task is executed, then decrease the corePoolSize (down to the limit of the user specified "core pool size") whenever a task completes.
To put it another way, keep track of the number of running or enqueued tasks, and ensure that the corePoolSize is equal to the number of tasks as long as it is between the user specified "core pool size" and the maximumPoolSize.
public class GrowBeforeQueueThreadPoolExecutor extends ThreadPoolExecutor {
private int userSpecifiedCorePoolSize;
private int taskCount;
public GrowBeforeQueueThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) {
super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);
userSpecifiedCorePoolSize = corePoolSize;
}
@Override
public void execute(Runnable runnable) {
synchronized (this) {
taskCount++;
setCorePoolSizeToTaskCountWithinBounds();
}
super.execute(runnable);
}
@Override
protected void afterExecute(Runnable runnable, Throwable throwable) {
super.afterExecute(runnable, throwable);
synchronized (this) {
taskCount--;
setCorePoolSizeToTaskCountWithinBounds();
}
}
private void setCorePoolSizeToTaskCountWithinBounds() {
int threads = taskCount;
if (threads < userSpecifiedCorePoolSize) threads = userSpecifiedCorePoolSize;
if (threads > getMaximumPoolSize()) threads = getMaximumPoolSize();
setCorePoolSize(threads);
}
}
As written the class doesn't support changing the user specified corePoolSize or maximumPoolSize after construction, and doesn't support manipulating the work queue directly or via remove()
or purge()
.
How can I work around this limitation in
ThreadPoolExecutor
where the queue needs to be bounded and full before more threads will be started.
I believe I have finally found a somewhat elegant (maybe a little hacky) solution to this limitation with ThreadPoolExecutor
. It involves extending LinkedBlockingQueue
to have it return false
for queue.offer(...)
when there are already some tasks queued. If the current threads are not keeping up with the queued tasks, the TPE will add additional threads. If the pool is already at max threads, then the RejectedExecutionHandler
will be called which does the put(...)
into the queue.
It certainly is strange to write a queue where offer(...)
can return false
and put()
never blocks so that's the hack part. But this works well with TPE's usage of the queue so I don't see any problem with doing this.
Here's the code:
// extend LinkedBlockingQueue to force offer() to return false conditionally
BlockingQueue<Runnable> queue = new LinkedBlockingQueue<Runnable>() {
private static final long serialVersionUID = -6903933921423432194L;
@Override
public boolean offer(Runnable e) {
// Offer it to the queue if there is 0 items already queued, else
// return false so the TPE will add another thread. If we return false
// and max threads have been reached then the RejectedExecutionHandler
// will be called which will do the put into the queue.
if (size() == 0) {
return super.offer(e);
} else {
return false;
}
}
};
ThreadPoolExecutor threadPool = new ThreadPoolExecutor(1 /*core*/, 50 /*max*/,
60 /*secs*/, TimeUnit.SECONDS, queue);
threadPool.setRejectedExecutionHandler(new RejectedExecutionHandler() {
@Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
try {
// This does the actual put into the queue. Once the max threads
// have been reached, the tasks will then queue up.
executor.getQueue().put(r);
// we do this after the put() to stop race conditions
if (executor.isShutdown()) {
throw new RejectedExecutionException(
"Task " + r + " rejected from " + e);
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
return;
}
}
});
With this mechanism, when I submit tasks to the queue, the ThreadPoolExecutor
will:
- Scale the number of threads up to the core size initially (here 1).
- Offer it to the queue. If the queue is empty it will be queued to be handled by the existing threads.
- If the queue has 1 or more elements already, the
offer(...)
will return false. - If false is returned, scale up the number of threads in the pool until they reach the max number (here 50).
- If at the max then it calls the
RejectedExecutionHandler
- The
RejectedExecutionHandler
then puts the task into the queue to be processed by the first available thread in FIFO order.
Although in my example code above, the queue is unbounded, you could also define it as a bounded queue. For example, if you add a capacity of 1000 to the LinkedBlockingQueue
then it will:
- scale the threads up to max
- then queue up until it is full with 1000 tasks
- then block the caller until space becomes available to the queue.
Also, if you needed to use offer(...)
in the
RejectedExecutionHandler
then you could use the offer(E, long, TimeUnit)
method instead with Long.MAX_VALUE
as the timeout.
Warning:
If you expect tasks to be added to the executor after it has been shutdown, then you may want to be smarter about throwing RejectedExecutionException
out of our custom RejectedExecutionHandler
when the executor-service has been shutdown. Thanks to @RaduToader for pointing this out.
Edit:
Another tweak to this answer could be to ask the TPE if there are idle threads and only enqueue the item if there is so. You would have to make a true class for this and add ourQueue.setThreadPoolExecutor(tpe);
method on it.
Then your offer(...)
method might look something like:
- Check to see if the
tpe.getPoolSize() == tpe.getMaximumPoolSize()
in which case just callsuper.offer(...)
. - Else if
tpe.getPoolSize() > tpe.getActiveCount()
then callsuper.offer(...)
since there seem to be idle threads. - Otherwise return
false
to fork another thread.
Maybe this:
int poolSize = tpe.getPoolSize();
int maximumPoolSize = tpe.getMaximumPoolSize();
if (poolSize >= maximumPoolSize || poolSize > tpe.getActiveCount()) {
return super.offer(e);
} else {
return false;
}
Note that the get methods on TPE are expensive since they access volatile
fields or (in the case of getActiveCount()
) lock the TPE and walk the thread-list. Also, there are race conditions here that may cause a task to be enqueued improperly or another thread forked when there was an idle thread.
Set core size and max size to the same value, and allow core threads to be removed from the pool with allowCoreThreadTimeOut(true)
.