How to group and count rows by month and year using Pandas?
To group on multiple criteria, pass a list of the columns or criteria:
df['birthdate'].groupby([df.birthdate.dt.year, df.birthdate.dt.month]).agg('count')
Example:
In [165]:
df = pd.DataFrame({'birthdate':pd.date_range(start=dt.datetime(2015,12,20),end=dt.datetime(2016,3,1))})
df.groupby([df['birthdate'].dt.year, df['birthdate'].dt.month]).agg({'count'})
Out[165]:
birthdate
count
birthdate birthdate
2015 12 12
2016 1 31
2 29
3 1
UPDATE
As of version 0.23.0
the above code no longer works due to the restriction that multi-index level names must be unique, you now need to rename
the levels in order for this to work:
In[107]:
df.groupby([df['birthdate'].dt.year.rename('year'), df['birthdate'].dt.month.rename('month')]).agg({'count'})
Out[107]:
birthdate
count
year month
2015 12 12
2016 1 31
2 29
3 1
You can also use the "monthly" period with to_period
with the dt
accessor:
In [11]: df = pd.DataFrame({'birthdate': pd.date_range(start='20-12-2015', end='3-1-2016')})
In [12]: df['birthdate'].groupby(df.birthdate.dt.to_period("M")).agg('count')
Out[12]:
birthdate
2015-12 12
2016-01 31
2016-02 29
2016-03 1
Freq: M, Name: birthdate, dtype: int64
It's worth noting if the datetime is the index (rather than a column) you can use resample
:
df.resample("M").count()