how to implement dijkstra's algorithm code example

Example 1: dijkstra algorithm c++

#include<bits/stdc++.h>
using namespace std;

int main()
{
	int n = 9;
	
	int mat[9][9] = { { 100,4,100,100,100,100,100,8,100}, 
                      { 4,100,8,100,100,100,100,11,100}, 
                      {100,8,100,7,100,4,100,100,2}, 
                      {100,100,7,100,9,14,100,100,100}, 
                      {100,100,100,9,100,100,100,100,100}, 
                      {100,100,4,14,10,100,2,100,100}, 
                      {100,100,100,100,100,2,100,1,6}, 
                      {8,11,100,100,100,100,1,100,7}, 
                      {100,100,2,100,100,100,6,7,100}};
	
	int src = 0;
	int count = 1;
	
	int path[n];
	for(int i=0;i<n;i++)
		path[i] = mat[src][i];
	
	int visited[n] = {0};
	visited[src] = 1;
	
	while(count<n)
	{
		int minNode;
		int minVal = 100;
		
		for(int i=0;i<n;i++)
			if(visited[i] == 0 && path[i]<minVal)
			{
				minVal = path[i];
				minNode = i;
			}
		
		visited[minNode] = 1;
		
		for(int i=0;i<n;i++)
			if(visited[i] == 0)
				path[i] = min(path[i],minVal+mat[minNode][i]);
					
		count++;
	}
	
	path[src] = 0;
	for(int i=0;i<n;i++)
		cout<<src<<" -> "<<path[i]<<endl;
	
	return(0);
}

Example 2: dijkstra's algorithm python

import sys

class Vertex:
    def __init__(self, node):
        self.id = node
        self.adjacent = {}
        # Set distance to infinity for all nodes
        self.distance = sys.maxint
        # Mark all nodes unvisited        
        self.visited = False  
        # Predecessor
        self.previous = None

    def add_neighbor(self, neighbor, weight=0):
        self.adjacent[neighbor] = weight

    def get_connections(self):
        return self.adjacent.keys()  

    def get_id(self):
        return self.id

    def get_weight(self, neighbor):
        return self.adjacent[neighbor]

    def set_distance(self, dist):
        self.distance = dist

    def get_distance(self):
        return self.distance

    def set_previous(self, prev):
        self.previous = prev

    def set_visited(self):
        self.visited = True

    def __str__(self):
        return str(self.id) + ' adjacent: ' + str([x.id for x in self.adjacent])

class Graph:
    def __init__(self):
        self.vert_dict = {}
        self.num_vertices = 0

    def __iter__(self):
        return iter(self.vert_dict.values())

    def add_vertex(self, node):
        self.num_vertices = self.num_vertices + 1
        new_vertex = Vertex(node)
        self.vert_dict[node] = new_vertex
        return new_vertex

    def get_vertex(self, n):
        if n in self.vert_dict:
            return self.vert_dict[n]
        else:
            return None

    def add_edge(self, frm, to, cost = 0):
        if frm not in self.vert_dict:
            self.add_vertex(frm)
        if to not in self.vert_dict:
            self.add_vertex(to)

        self.vert_dict[frm].add_neighbor(self.vert_dict[to], cost)
        self.vert_dict[to].add_neighbor(self.vert_dict[frm], cost)

    def get_vertices(self):
        return self.vert_dict.keys()

    def set_previous(self, current):
        self.previous = current

    def get_previous(self, current):
        return self.previous

def shortest(v, path):
    ''' make shortest path from v.previous'''
    if v.previous:
        path.append(v.previous.get_id())
        shortest(v.previous, path)
    return

import heapq

def dijkstra(aGraph, start, target):
    print '''Dijkstra's shortest path'''
    # Set the distance for the start node to zero 
    start.set_distance(0)

    # Put tuple pair into the priority queue
    unvisited_queue = [(v.get_distance(),v) for v in aGraph]
    heapq.heapify(unvisited_queue)

    while len(unvisited_queue):
        # Pops a vertex with the smallest distance 
        uv = heapq.heappop(unvisited_queue)
        current = uv[1]
        current.set_visited()

        #for next in v.adjacent:
        for next in current.adjacent:
            # if visited, skip
            if next.visited:
                continue
            new_dist = current.get_distance() + current.get_weight(next)
            
            if new_dist < next.get_distance():
                next.set_distance(new_dist)
                next.set_previous(current)
                print 'updated : current = %s next = %s new_dist = %s' \
                        %(current.get_id(), next.get_id(), next.get_distance())
            else:
                print 'not updated : current = %s next = %s new_dist = %s' \
                        %(current.get_id(), next.get_id(), next.get_distance())

        # Rebuild heap
        # 1. Pop every item
        while len(unvisited_queue):
            heapq.heappop(unvisited_queue)
        # 2. Put all vertices not visited into the queue
        unvisited_queue = [(v.get_distance(),v) for v in aGraph if not v.visited]
        heapq.heapify(unvisited_queue)
    
if __name__ == '__main__':

    g = Graph()

    g.add_vertex('a')
    g.add_vertex('b')
    g.add_vertex('c')
    g.add_vertex('d')
    g.add_vertex('e')
    g.add_vertex('f')

    g.add_edge('a', 'b', 7)  
    g.add_edge('a', 'c', 9)
    g.add_edge('a', 'f', 14)
    g.add_edge('b', 'c', 10)
    g.add_edge('b', 'd', 15)
    g.add_edge('c', 'd', 11)
    g.add_edge('c', 'f', 2)
    g.add_edge('d', 'e', 6)
    g.add_edge('e', 'f', 9)

    print 'Graph data:'
    for v in g:
        for w in v.get_connections():
            vid = v.get_id()
            wid = w.get_id()
            print '( %s , %s, %3d)'  % ( vid, wid, v.get_weight(w))

    dijkstra(g, g.get_vertex('a'), g.get_vertex('e')) 

    target = g.get_vertex('e')
    path = [target.get_id()]
    shortest(target, path)
    print 'The shortest path : %s' %(path[::-1])

Example 3: dijkstra's algorithm

# Providing the graph
n = int(input("Enter the number of vertices of the graph"))

# using adjacency matrix representation 
vertices = [[0, 0, 1, 1, 0, 0, 0],
            [0, 0, 1, 0, 0, 1, 0],
            [1, 1, 0, 1, 1, 0, 0],
            [1, 0, 1, 0, 0, 0, 1],
            [0, 0, 1, 0, 0, 1, 0],
            [0, 1, 0, 0, 1, 0, 1],
            [0, 0, 0, 1, 0, 1, 0]]

edges = [[0, 0, 1, 2, 0, 0, 0],
         [0, 0, 2, 0, 0, 3, 0],
         [1, 2, 0, 1, 3, 0, 0],
         [2, 0, 1, 0, 0, 0, 1],
         [0, 0, 3, 0, 0, 2, 0],
         [0, 3, 0, 0, 2, 0, 1],
         [0, 0, 0, 1, 0, 1, 0]]

# Find which vertex is to be visited next
def to_be_visited():
    global visited_and_distance
    v = -10
    for index in range(num_of_vertices):
        if visited_and_distance[index][0] == 0 \
            and (v < 0 or visited_and_distance[index][1] <=
                 visited_and_distance[v][1]):
            v = index
    return v


num_of_vertices = len(vertices[0])

visited_and_distance = [[0, 0]]
for i in range(num_of_vertices-1):
    visited_and_distance.append([0, sys.maxsize])

for vertex in range(num_of_vertices):

    # Find next vertex to be visited
    to_visit = to_be_visited()
    for neighbor_index in range(num_of_vertices):

        # Updating new distances
        if vertices[to_visit][neighbor_index] == 1 and 
                visited_and_distance[neighbor_index][0] == 0:
            new_distance = visited_and_distance[to_visit][1] 
                + edges[to_visit][neighbor_index]
            if visited_and_distance[neighbor_index][1] > new_distance:
                visited_and_distance[neighbor_index][1] = new_distance
        
        visited_and_distance[to_visit][0] = 1

i = 0

# Printing the distance
for distance in visited_and_distance:
    print("Distance of ", chr(ord('a') + i),
          " from source vertex: ", distance[1])
    i = i + 1

Example 4: dijkstra's algorithm python

import sys


class Vertex:
    def __init__(self, node):
        self.id = node
        self.adjacent = {}
        # Set distance to infinity for all nodes
        self.distance = sys.maxsize
        # Mark all nodes unvisited
        self.visited = False
        # Predecessor
        self.previous = None

    def __lt__(self, other):
        return self.distance < other.distance

    def add_neighbor(self, neighbor, weight=0):
        self.adjacent[neighbor] = weight

    def get_connections(self):
        return self.adjacent.keys()

    def get_id(self):
        return self.id

    def get_weight(self, neighbor):
        return self.adjacent[neighbor]

    def set_distance(self, dist):
        self.distance = dist

    def get_distance(self):
        return self.distance

    def set_previous(self, prev):
        self.previous = prev

    def set_visited(self):
        self.visited = True

    def __str__(self):
        return str(self.id) + ' adjacent: ' + str([x.id for x in self.adjacent])


class Graph:
    def __init__(self):
        self.vert_dict = {}
        self.num_vertices = 0

    def __iter__(self):
        return iter(self.vert_dict.values())

    def add_vertex(self, node):
        self.num_vertices = self.num_vertices + 1
        new_vertex = Vertex(node)
        self.vert_dict[node] = new_vertex
        return new_vertex

    def get_vertex(self, n):
        if n in self.vert_dict:
            return self.vert_dict[n]
        else:
            return None

    def add_edge(self, frm, to, cost=0):
        if frm not in self.vert_dict:
            self.add_vertex(frm)
        if to not in self.vert_dict:
            self.add_vertex(to)

        self.vert_dict[frm].add_neighbor(self.vert_dict[to], cost)
        self.vert_dict[to].add_neighbor(self.vert_dict[frm], cost)

    def get_vertices(self):
        return self.vert_dict.keys()

    def set_previous(self, current):
        self.previous = current

    def get_previous(self, current):
        return self.previous


def shortest(v, path):
    ''' make shortest path from v.previous'''
    if v.previous:
        path.append(v.previous.get_id())
        shortest(v.previous, path)
    return


import heapq


def dijkstra(aGraph, start, target):
    print('''Dijkstra's shortest path''')
    # Set the distance for the start node to zero
    start.set_distance(0)

    # Put tuple pair into the priority queue
    unvisited_queue = [(v.get_distance(), v) for v in aGraph]
    heapq.heapify(unvisited_queue)

    while len(unvisited_queue):
        # Pops a vertex with the smallest distance
        uv = heapq.heappop(unvisited_queue)
        current = uv[1]
        current.set_visited()

        # for next in v.adjacent:
        for next in current.adjacent:
            # if visited, skip
            if next.visited:
                continue
            new_dist = current.get_distance() + current.get_weight(next)

            if new_dist < next.get_distance():
                next.set_distance(new_dist)
                next.set_previous(current)
                print('updated : current = %s next = %s new_dist = %s' \
                      % (current.get_id(), next.get_id(), next.get_distance()))
            else:
                print('not updated : current = %s next = %s new_dist = %s' \
                      % (current.get_id(), next.get_id(), next.get_distance()))

        # Rebuild heap
        # 1. Pop every item
        while len(unvisited_queue):
            heapq.heappop(unvisited_queue)
        # 2. Put all vertices not visited into the queue
        unvisited_queue = [(v.get_distance(), v) for v in aGraph if not v.visited]
        heapq.heapify(unvisited_queue)


if __name__ == '__main__':

    g = Graph()

    g.add_vertex('a')
    g.add_vertex('b')
    g.add_vertex('c')
    g.add_vertex('d')
    g.add_vertex('e')
    g.add_vertex('f')

    g.add_edge('a', 'b', 7)
    g.add_edge('a', 'c', 9)
    g.add_edge('a', 'f', 14)
    g.add_edge('b', 'c', 10)
    g.add_edge('b', 'd', 15)
    g.add_edge('c', 'd', 11)
    g.add_edge('c', 'f', 2)
    g.add_edge('d', 'e', 6)
    g.add_edge('e', 'f', 9)

    print('Graph data:')
    for v in g:
        for w in v.get_connections():
            vid = v.get_id()
            wid = w.get_id()
            print('( %s , %s, %3d)' % (vid, wid, v.get_weight(w)))

    dijkstra(g, g.get_vertex('a'), g.get_vertex('e'))

    target = g.get_vertex('e')
    path = [target.get_id()]
    shortest(target, path)
    print('The shortest path : %s' % (path[::-1]))