How to merge and sum two data frames
With dplyr,
library(dplyr)
# add rownames as a column in each data.frame and bind rows
bind_rows(df1 %>% add_rownames(),
df2 %>% add_rownames()) %>%
# evaluate following calls for each value in the rowname column
group_by(rowname) %>%
# add all non-grouping variables
summarise_all(sum)
## # A tibble: 7 x 4
## rowname x y z
## <chr> <int> <int> <int>
## 1 A 1 2 3
## 2 B 2 3 4
## 3 C 4 6 8
## 4 D 6 8 10
## 5 E 8 10 12
## 6 F 4 5 6
## 7 G 5 6 7
This might need some teaking to get the rownames logic working on a longer example:
dfr <-rbind(df1,df2)
do.call(rbind, lapply( split(dfr, sapply(rownames(dfr),substr,1,1)), colSums))
x y z
A 1 2 3
B 2 3 4
C 4 6 8
D 6 8 10
E 8 10 12
F 4 5 6
G 5 6 7
If the rownames could all be assumed to be alpha characters a gsub
solution should be easy.
A solution with base R:
# create a new variable from the rownames
df1$rn <- rownames(df1)
df2$rn <- rownames(df2)
# bind the two dataframes together by row and aggregate
res <- aggregate(cbind(x,y,z) ~ rn, rbind(df1,df2), sum)
# or (thx to @alistaire for reminding me):
res <- aggregate(. ~ rn, rbind(df1,df2), sum)
# assign the rownames again
rownames(res) <- res$rn
# get rid of the 'rn' column
res <- res[, -1]
which gives:
> res x y z A 1 2 3 B 2 3 4 C 4 6 8 D 6 8 10 E 8 10 12 F 4 5 6 G 5 6 7