How to pass a parameter to Scikit-Learn Keras model function
To pass a parameter to build_fn model, can be done passing arguments to __init__()
and in turn it will be passed to model_build_fn
directly. For example, calling KerasClassifier(myparam=10)
will result in a model_build_fn(my_param=10)
here's an example:
class MyMultiOutputKerasRegressor(KerasRegressor):
# initializing
def __init__(self, **kwargs):
KerasRegressor.__init__(self, **kwargs)
# simpler fit method
def fit(self, X, y, **kwargs):
KerasRegressor.fit(self, X, [y]*3, **kwargs)
(...)
def get_quantile_reg_rpf_nn(layers_shape=[50,100,200,100,50], inDim= 4, outDim=1, act='relu'):
# do model stuff...
(...) initialize the Keras regressor:
base_model = MyMultiOutputKerasRegressor(build_fn=get_quantile_reg_rpf_nn,
layers_shape=[50,100,200,100,50], inDim= 4,
outDim=1, act='relu', epochs=numEpochs,
batch_size=batch_size, verbose=0)
Last answer does not work anymore.
An alternative is to return a function from create_model, as KerasClassifier build_fn expects a function:
def create_model(input_dim=None):
def model():
# create model
nn = Sequential()
nn.add(Dense(12, input_dim=input_dim, init='uniform', activation='relu'))
nn.add(Dense(6, init='uniform', activation='relu'))
nn.add(Dense(1, init='uniform', activation='sigmoid'))
# Compile model
nn.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return nn
return model
Or even better, according to documentation
sk_params takes both model parameters and fitting parameters. Legal model parameters are the arguments of build_fn. Note that like all other estimators in scikit-learn, build_fn should provide default values for its arguments, so that you could create the estimator without passing any values to sk_params
So you can define your function like this:
def create_model(number_of_features=10): # 10 is the *default value*
# create model
nn = Sequential()
nn.add(Dense(12, input_dim=number_of_features, init='uniform', activation='relu'))
nn.add(Dense(6, init='uniform', activation='relu'))
nn.add(Dense(1, init='uniform', activation='sigmoid'))
# Compile model
nn.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return nn
And create a wrapper:
KerasClassifier(build_fn=create_model, number_of_features=20, epochs=25, batch_size=1000, ...)
You can add an input_dim
keyword argument to the KerasClassifier
constructor:
model = KerasClassifier(build_fn=create_model, input_dim=5, nb_epoch=150, batch_size=10, verbose=0)