How to prove distance from foci on an ellipse is equal to twice the semi-major axis (for specific ellipse)
An ellipse is a plane curve surrounding two foci, such that for all points on the curve, the sum of the two distances to the foci is a constant. One starts with $\sqrt{(x-c)^2+y^2}+\sqrt{(x+c)^2+y^2}=2a$ (your question) to arrive at $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, where $2a$ is any constant (which ends up being the length of the semi-major axis), $b^2=a^2-c^2$, and the foci are $(-c,0),(+c,0)$. Note that $a,b,c\in\mathbb R^+$.
Addendum
Finding the distance of either foci from a point $P(x,y)$ on the ellipse, $$PF=\sqrt{(x-c)^2+y^2}=\sqrt{(x-c)^2+b^2-\frac{b^2}{a^2}x^2}=\sqrt{\frac{c^2}{a^2}x^2-2cx+a^2}=\left\lvert\frac ca x-a\right\rvert=a-ex$$ $$PF^\prime=\sqrt{(x+c)^2+y^2}=\sqrt{(x+c)^2+b^2-\frac{b^2}{a^2}x^2}=\sqrt{\frac{c^2}{a^2}x^2+2cx+a^2}=\left\lvert\frac ca x+a\right\rvert=a+ex$$ since $x\in[-a,+a]$, where $e=\frac ca$.