How to put a big equation in a single slide?

Much of the horizontal space is taken by the long square roots. Always presume that your audience is able to read, so you can use an abbreviation.

\documentclass{beamer}
\usepackage{mathtools}

\begin{document}

\begin{frame}

\begin{align}
& (\lambda_1-2n+l+4)(\lambda_1-n-l+2)\leq l(n-l) \notag
\\
\implies\quad
& \lambda_1^2+\lambda_1(6-3n)+(2n^2-2l-8n+8)\leq 0 \notag
\\
\implies\quad
& \Bigl \{ 2\lambda_1-\bigl(3n-6-\sqrt{D}\,\bigr)\Bigr\}
  \Bigl \{ 2\lambda_1-\bigl(3n-6+\sqrt{D}\,\bigr)\Bigr \} \leq 0 \notag
\\
\implies\quad
& \frac{3n-6-\sqrt{D}}{2}\leq \lambda_1 \leq \frac{3n-6+\sqrt{D}}{2} \label{whatever}
\end{align}
where $D=8l+n^2-4n+4$.

\end{frame}

\end{document}

A vertically centered equation number would be very ambiguous, so I chose to set it at the bottom. I also reduced the size of the parentheses; note the \, to separate the vinculum from the closing parenthesis.

enter image description here

In case of need, the middle long equation could be split using multlined (this is why I loaded mathtools.

\documentclass{beamer}
\usepackage{mathtools}

\begin{document}

\begin{frame}

\begin{align}
& (\lambda_1-2n+l+4)(\lambda_1-n-l+2)\leq l(n-l) \notag
\\
\implies\quad
& \lambda_1^2+\lambda_1(6-3n)+(2n^2-2l-8n+8)\leq 0 \notag
\\
\implies\quad
& \begin{multlined}[t]
  \Bigl \{ 2\lambda_1-\bigl(3n-6-\sqrt{D}\,\bigr)\Bigr\} \\
  \cdot \Bigl \{ 2\lambda_1-\bigl(3n-6+\sqrt{D}\,\bigr)\Bigr \} \leq 0 
  \end{multlined} \notag
\\
\implies\quad
& \frac{3n-6-\sqrt{D}}{2}\leq \lambda_1 \leq \frac{3n-6+\sqrt{D}}{2} \label{whatever}
\end{align}
where $D=8l+n^2-4n+4$.

\end{frame}

\end{document}

enter image description here

Finally, with the text typeset in sans serif, I'd avoid “l” as a variable.


Here's a solution suggestion that performs alignment on the inequality symbols.

Aside: The \bigg sizing instructions are, in my opinion, excessive; \big and \Big suffice completely.

enter image description here

\documentclass{beamer}
\begin{document}
\begin{frame}

\begin{equation}
\begin{aligned}
(\lambda_1-2n+l+4)(\lambda_1-n-l+2) &\leq l(n-l) \\
\implies \lambda_1^2+\lambda_1(6-3n)+(2n^2-2l-8n+8) &\leq 0\\
\implies \Bigl\{ 2\lambda_1-\bigl(3n-6-\sqrt{8l+n^2-4n+4}\,\bigr )\Bigr \} \quad&\\
\times\Bigl\{ 2\lambda_1-\bigl(3n-6+\sqrt{8l+n^2-4n+4}\,\bigr)\Bigr\} &\leq 0 \\
\implies  \frac{3n-6-\sqrt{8l+n^2-4n+4}}{2}&\leq \lambda_1\\
\text{and}\quad 
\frac{3n-6+\sqrt{8l+n^2-4n+4}}{2} &\geq \lambda_1\\
\end{aligned}
\end{equation}

\end{frame}
\end{document}

Addendum: Here's a second solution, inspired by @egreg's observation that a lot of space is taken up by the repeated term \sqrt{8l+n^2-4n+4}. Replacing it with the symbol D, rewriting the final row to use interval notation instead of a pair of inequalities, and aligning the rows on the \implies symbols instead of on the inequality symbols yields the following result:

enter image description here

\documentclass{beamer}
\begin{document}
\begin{frame}

\begin{equation}
\begin{aligned}[b]
&(\lambda_1-2n+l+4)(\lambda_1-n-l+2) \leq l(n-l)\\
\implies&\lambda_1^2-\lambda_1(3n-6)+(2n^2-2l-8n+8)\leq 0\\
\implies&\bigl( 2\lambda_1-(3n-6-D) \bigr) 
         \bigl( 2\lambda_1-(3n-6+D) \bigr) \leq 0 \\
\implies&\lambda_1\in\bigl[
         (\tfrac{3}{2}n-3)-\tfrac{1}{2}D, 
         (\tfrac{3}{2}n-3)+\tfrac{1}{2}D \bigr]
\end{aligned}
\end{equation}
where $D=\sqrt{(n-2)^2+8l}$\,.

\end{frame}
\end{document}

Inside a split you can specify an alignment point for each row using &, this greatly enhances the legibility of multi-line equations. Also, you'd have to split the very long lines into two lines as well. In the following I did so and move those continuing lines further to the right using \qquad.

\documentclass[]{beamer}

\usepackage[]{amsmath}

\begin{document}
\begin{frame}
\begin{equation}
  \begin{split}
    &(\lambda_1-2n+l+4)(\lambda_1-n-l+2)\leq l(n-l)
      \\
    \implies &\lambda_1^2+\lambda_1(6-3n)+(2n^2-2l-8n+8)\leq 0
      \\
    \implies &\bigg \{ 2\lambda_1-\bigg(3n-6-\sqrt{8l+n^2-4n+4}\bigg )\bigg \}
      \\
      &\qquad\cdot\bigg \{ 2\lambda_1-\bigg(3n-6+\sqrt{8l+n^2-4n+4}\bigg)\bigg \} \leq 0
      \\
    \implies  &\frac{3n-6-\sqrt{8l+n^2-4n+4}}{2}
      \\
    &\qquad\leq \lambda_1 \leq \frac{3n-6+\sqrt{8l+n^2-4n+4}}{2}
  \end{split}
\end{equation}

\end{frame}
\end{document}

enter image description here