How to quickly determine whether a given natural number is a power of another natural number?
This can be done in "essentially linear time." Check out Daniel Bernstein's website: http://cr.yp.to/arith.html
Especially note his papers labeled [powers] and [powers2].
In order to test whether or not a natural number $n$ is a perfect power, we can conduct a binary search of the integers {1,2,...,n} for a number $m$ such that $n = m^b$ for some $b>1$. Let $b>1$. If a solution $m$ to $m^b =n$ exists, then it must lie in some interval $[c_i,d_i]$. When $i = 0$ we may take $[c_0,d_0] = [1,n]$. To define $[c_{i+1},d_{i+1}]$, consider $\alpha:= \left\lfloor \frac{(ci+di)}{2}\right\rfloor$. If $\alpha^b = n$ then we’re done. If $\alpha^b > n$, let $[c_{i+1}, d_{i+1}] = [c_i, \alpha]$; otherwise $\alpha^b < n$ and we let $[c_{i+1}, d_{i+1}] = [\alpha, d_i]$. We continue in this manner until $|c_i − d_i| \leq 1$. We then increase the value stored in variable $b$ and start the loop again. Performing this loop for all $b \leq log(n)$ completes the algorithm.
A pseudocode implementation of this algorithm can be found on page 21 of Dietzelbinger's Primality Testing in Polynomial Time. Its complexity is approximately $O(log^3(n))$.
The computer algebra system GAP performs this test and determines a smallest root $a$ of a given integer $n$ quite efficiently. The following is copied directly from its source code (file gap4r6/lib/integer.gi), and should be self-explaining:
#############################################################################
##
#F SmallestRootInt( <n> ) . . . . . . . . . . . smallest root of an integer
##
InstallGlobalFunction(SmallestRootInt,
function ( n )
local k, r, s, p, l, q;
# check the argument
if n > 0 then k := 2; s := 1;
elif n < 0 then k := 3; s := -1; n := -n;
else return 0;
fi;
# exclude small divisors, and thereby large exponents
if n mod 2 = 0 then
p := 2;
else
p := 3; while p < 100 and n mod p <> 0 do p := p+2; od;
fi;
l := LogInt( n, p );
# loop over the possible prime divisors of exponents
# use Euler's criterion to cast out impossible ones
while k <= l do
q := 2*k+1; while not IsPrimeInt(q) do q := q+2*k; od;
if PowerModInt( n, (q-1)/k, q ) <= 1 then
r := RootInt( n, k );
if r ^ k = n then
n := r;
l := QuoInt( l, k );
else
k := NextPrimeInt( k );
fi;
else
k := NextPrimeInt( k );
fi;
od;
return s * n;
end);