How to reduce the number of colors in an image with OpenCV?
This subject was well covered on OpenCV 2 Computer Vision Application Programming Cookbook:
Chapter 2 shows a few reduction operations, one of them demonstrated here in C++ and later in Python:
#include <iostream>
#include <vector>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
void colorReduce(cv::Mat& image, int div=64)
{
int nl = image.rows; // number of lines
int nc = image.cols * image.channels(); // number of elements per line
for (int j = 0; j < nl; j++)
{
// get the address of row j
uchar* data = image.ptr<uchar>(j);
for (int i = 0; i < nc; i++)
{
// process each pixel
data[i] = data[i] / div * div + div / 2;
}
}
}
int main(int argc, char* argv[])
{
// Load input image (colored, 3-channel, BGR)
cv::Mat input = cv::imread(argv[1]);
if (input.empty())
{
std::cout << "!!! Failed imread()" << std::endl;
return -1;
}
colorReduce(input);
cv::imshow("Color Reduction", input);
cv::imwrite("output.jpg", input);
cv::waitKey(0);
return 0;
}
Below you can find the input image (left) and the output of this operation (right):
The equivalent code in Python would be the following: (credits to @eliezer-bernart)
import cv2
import numpy as np
input = cv2.imread('castle.jpg')
# colorReduce()
div = 64
quantized = input // div * div + div // 2
cv2.imwrite('output.jpg', quantized)
There are many ways to do it. The methods suggested by jeff7 are OK, but some drawbacks are:
- method 1 have parameters N and M, that you must choose, and you must also convert it to another colorspace.
- method 2 answered can be very slow, since you should compute a 16.7 Milion bins histogram and sort it by frequency (to obtain the 64 higher frequency values)
I like to use an algorithm based on the Most Significant Bits to use in a RGB color and convert it to a 64 color image. If you're using C/OpenCV, you can use something like the function below.
If you're working with gray-level images I recommed to use the LUT() function of the OpenCV 2.3, since it is faster. There is a tutorial on how to use LUT to reduce the number of colors. See: Tutorial: How to scan images, lookup tables... However I find it more complicated if you're working with RGB images.
void reduceTo64Colors(IplImage *img, IplImage *img_quant) {
int i,j;
int height = img->height;
int width = img->width;
int step = img->widthStep;
uchar *data = (uchar *)img->imageData;
int step2 = img_quant->widthStep;
uchar *data2 = (uchar *)img_quant->imageData;
for (i = 0; i < height ; i++) {
for (j = 0; j < width; j++) {
// operator XXXXXXXX & 11000000 equivalent to XXXXXXXX AND 11000000 (=192)
// operator 01000000 >> 2 is a 2-bit shift to the right = 00010000
uchar C1 = (data[i*step+j*3+0] & 192)>>2;
uchar C2 = (data[i*step+j*3+1] & 192)>>4;
uchar C3 = (data[i*step+j*3+2] & 192)>>6;
data2[i*step2+j] = C1 | C2 | C3; // merges the 2 MSB of each channel
}
}
}
You might consider K-means, yet in this case it will most likely be extremely slow. A better approach might be doing this "manually" on your own. Let's say you have image of type CV_8UC3
, i.e. an image where each pixel is represented by 3 RGB values from 0 to 255 (Vec3b
). You might "map" these 256 values to only 4 specific values, which would yield 4 x 4 x 4
= 64
possible colors.
I've had a dataset, where I needed to make sure that dark = black, light = white and reduce the amount of colors of everything between. This is what I did (C++):
inline uchar reduceVal(const uchar val)
{
if (val < 64) return 0;
if (val < 128) return 64;
return 255;
}
void processColors(Mat& img)
{
uchar* pixelPtr = img.data;
for (int i = 0; i < img.rows; i++)
{
for (int j = 0; j < img.cols; j++)
{
const int pi = i*img.cols*3 + j*3;
pixelPtr[pi + 0] = reduceVal(pixelPtr[pi + 0]); // B
pixelPtr[pi + 1] = reduceVal(pixelPtr[pi + 1]); // G
pixelPtr[pi + 2] = reduceVal(pixelPtr[pi + 2]); // R
}
}
}
causing [0,64)
to become 0
, [64,128)
-> 64
and [128,255)
-> 255
, yielding 27
colors:
To me this seems to be neat, perfectly clear and faster than anything else mentioned in other answers.
You might also consider reducing these values to one of the multiples of some number, let's say:
inline uchar reduceVal(const uchar val)
{
if (val < 192) return uchar(val / 64.0 + 0.5) * 64;
return 255;
}
which would yield a set of 5 possible values: {0, 64, 128, 192, 255}
, i.e. 125 colors.