How to remove square bracket from pandas dataframe

If values in column value have type list, use:

df['value'] = df['value'].str[0]

Or:

df['value'] = df['value'].str.get(0)

Docs.

Sample:

df = pd.DataFrame({'value':[[63],[65],[64]]})
print (df)
  value
0  [63]
1  [65]
2  [64]

#check type if index 0 exist
print (type(df.loc[0, 'value']))
<class 'list'>

#check type generally, index can be `DatetimeIndex`, `FloatIndex`...
print (type(df.loc[df.index[0], 'value']))
<class 'list'>

df['value'] = df['value'].str.get(0)
print (df)
   value
0     63
1     65
2     64

If strings use str.strip and then convert to numeric by astype:

df['value'] = df['value'].str.strip('[]').astype(int)

Sample:

df = pd.DataFrame({'value':['[63]','[65]','[64]']})
print (df)
  value
0  [63]
1  [65]
2  [64]

#check type if index 0 exist
print (type(df.loc[0, 'value']))
<class 'str'>

#check type generally, index can be `DatetimeIndex`, `FloatIndex`...
print (type(df.loc[df.index[0], 'value']))
<class 'str'>


df['value'] = df['value'].str.strip('[]').astype(int)
print (df)
  value
0    63
1    65
2    64

if string we can also use string.replace method

import pandas as pd

df =pd.DataFrame({'value':['[63]','[65]','[64]']})

print(df)
  value
0  [63]
1  [65]
2  [64]

df['value'] =  df['value'].apply(lambda x: x.replace('[','').replace(']','')) 

#convert the string columns to int
df['value'] = df['value'].astype(int)

#output
print(df)

   value
0     63
1     65
2     64

print(df.dtypes)
value    int32
dtype: object