How to show $\frac{1}{L}\|\nabla f(y)-\nabla f(x)\|_2^2 \leq \langle \nabla f(y) - \nabla f(x) ,y-x \rangle$ for strongly convex function?
In order to get the conclusion we only need the convexity of $f(x)$ rather than the strong convexity. It is easy to show that if $\nabla f(x)$ is Lipschitz continuous with constant $L$ then we have:$$f(y)-f(x)-\langle\nabla f(x),y-x\rangle\leq\frac{L}{2}\| x-y\|^2$$ To show this inequality, we have:\begin{align} f(y)-f(x)-\langle\nabla f(x),y-x\rangle&=\int_{0}^{1}\langle \nabla f(x+t(y-x)),y-x \rangle dt-\langle\nabla f(x),y-x\rangle \\ &=\int_{0}^{1}\langle \nabla f(x+t(y-x))-\nabla f(x),y-x \rangle dt \\ &\leq\int_0^1\|\nabla f(x+t(y-x))-\nabla f(x)\|\|y-x\| dt\\ &\leq\int_0^1Lt\|y-x \|^2dt=\frac{L}{2}\|y-x\|^2 \end{align}
In order to get the result we need to consider the next function $$h(x)=f(x)-\langle \nabla f(y),x\rangle$$ It is clear that $h(x)$ is convex and also $\nabla h(x)$ is Lipschitz continuous with constant $L$, and hence $y\in\arg\min_{x}h(x)$ because $\nabla h(y)=0$. We have:$$ h(x-\frac{1}{L}\nabla h(x))\geq h(y) $$ Use the first inequality: $$ h(x-\frac{1}{L}\nabla h(x))\leq h(x)-\frac{1}{2L}\|\nabla h(x)\|^2 $$ We have: $$ h(y)\leq h(x)-\frac{1}{2L}\|\nabla h(x) \|^2 $$ $$f(y)+\langle\nabla f(y),x-y\rangle\leq f(x)-\frac{1}{2L}\| \nabla f(x)-\nabla f(y)\|^2 $$ $$f(y)-f(x)+\langle\nabla f(y),x-y\rangle\leq -\frac{1}{2L}\| \nabla f(x)-\nabla f(y)\|^2$$ Exchange $x,y$: $$f(x)-f(y)+\langle\nabla f(x),y-x\rangle\leq -\frac{1}{2L}\| \nabla f(x)-\nabla f(y)\|^2$$ Add them together then you can get the conclusion.