How to simplify $\sin^4 x+\cos^4 x$ using trigonometrical identities?

\begin{align} \sin^4 x +\cos^4 x&=\sin^4 x +2\sin^2x\cos^2 x+\cos^4 x - 2\sin^2x\cos^2 x\\ &=(\sin^2x+\cos^2 x)^2-2\sin^2x\cos^2 x\\ &=1^2-\frac{1}{2}(2\sin x\cos x)^2\\ &=1-\frac{1}{2}\sin^2 (2x)\\ &=1-\frac{1}{2}\left(\frac{1-\cos 4x}{2}\right)\\ &=\frac{3}{4}+\frac{1}{4}\cos 4x \end{align}


Let $$\displaystyle y=\sin^4 x+\cos^4 x = \left(\sin^2 x+\cos^2 x\right)^2-2\sin^2 x\cdot \cos^2 x = 1-\frac{1}{2}\left(2\sin x\cdot \cos x\right)^2$$

Now using $$ \sin 2A = 2\sin A\cos A$$

So, we get $$\displaystyle y=1-\frac{1}{2}\sin^2 2x$$


Note that $a^2 + b^2 = (a+b)^2 - 2ab$

$$(\sin^2 x)^2 + (\cos^2 x)^2 = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x\cos^2 x =(\sin^2 x + \cos^2 x)^2 - 2(\sin x\cos x)^2 = \\ 1 -\frac{ \sin^2 2x}{2}$$

Note the following results:

$$ \sin^2 x + \cos^2 x = 1$$

$$ \sin x \cos x = \frac{\sin 2x}{2}$$

Tags:

Trigonometry