How to use feedable iterator from Tensorflow Dataset API along with MonitoredTrainingSession?

I got the answer from the Tensorflow GitHub issue - https://github.com/tensorflow/tensorflow/issues/12859

The solution is to invoke the iterator.string_handle() before creating the MonitoredSession.

import tensorflow as tf
from tensorflow.contrib.data import Dataset, Iterator

dataset_train = Dataset.range(10)
dataset_val = Dataset.range(90, 100)

iter_train_handle = dataset_train.make_one_shot_iterator().string_handle()
iter_val_handle = dataset_val.make_one_shot_iterator().string_handle()

handle = tf.placeholder(tf.string, shape=[])
iterator = Iterator.from_string_handle(
    handle, dataset_train.output_types, dataset_train.output_shapes)
next_batch = iterator.get_next()

with tf.train.MonitoredTrainingSession() as sess:
    handle_train, handle_val = sess.run([iter_train_handle, iter_val_handle])

    for step in range(10):
        print('train', sess.run(next_batch, feed_dict={handle: handle_train}))

        if step % 3 == 0:
            print('val', sess.run(next_batch, feed_dict={handle: handle_val}))

Output:
('train', 0)
('val', 90)
('train', 1)
('train', 2)
('val', 91)
('train', 3)

@Michael Jaison G answer is correct. However, it does not work when you also want to use certain session_run_hooks that need to evaluate parts of the graph, like e.g. LoggingTensorHook or SummarySaverHook. The example below will cause an error:

import tensorflow as tf

dataset_train = tf.data.Dataset.range(10)
dataset_val = tf.data.Dataset.range(90, 100)

iter_train_handle = dataset_train.make_one_shot_iterator().string_handle()
iter_val_handle = dataset_val.make_one_shot_iterator().string_handle()

handle = tf.placeholder(tf.string, shape=[])
iterator = tf.data.Iterator.from_string_handle(
    handle, dataset_train.output_types, dataset_train.output_shapes)
feature = iterator.get_next()

pred = feature * feature
tf.summary.scalar('pred', pred)
global_step = tf.train.create_global_step()

summary_hook = tf.train.SummarySaverHook(save_steps=5,
                                         output_dir="summaries", summary_op=tf.summary.merge_all())

with tf.train.MonitoredTrainingSession(hooks=[summary_hook]) as sess: 
    handle_train, handle_val = sess.run([iter_train_handle, iter_val_handle])

    for step in range(10):
        feat = sess.run(feature, feed_dict={handle: handle_train})
        pred_ = sess.run(pred, feed_dict={handle: handle_train})
        print('train: ', feat)
        print('pred: ', pred_)

        if step % 3 == 0:
            print('val', sess.run(feature, feed_dict={handle: handle_val}))

This will fail with error:

InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder' with dtype string
     [[Node: Placeholder = Placeholder[dtype=DT_STRING, shape=[], _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
     [[Node: cond/Switch_1/_15 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device_incarnation=1, tensor_name="edge_18_cond/Switch_1", tensor_type=DT_INT64, _device="/job:localhost/replica:0/task:0/device:GPU:0"]()]]

The reason being that the hook will try to evaluate the graph already upon the first session.run([iter_train_handle, iter_val_handle]) which obviously does not contain a handle in the feed_dict yet.

The workaround solution being to overwrite the hooks that cause the problem and changing the code in before_run and after_run to only evaluate on session.run calls containing the handle in the feed_dict (you can access the feed_dict of the current session.run call via the run_context argument of before_run and after_run)

Or you can use the latest master of Tensorflow (post-1.4) which adds a run_step_fn function to MonitoredSession which allows you to specify the following step_fn which will avoid the error (on the expense of evaluating the if statement TrainingIteration number of times ...)

def step_fn(step_context):
  if handle_train is None:
    handle_train, handle_val = sess.run([iter_train_handle, iter_val_handle])
  return step_context.run_with_hooks(fetches=..., feed_dict=...)

There is a demo for using placeholder in mot_session with SessionRunHook. This demo is about switching datasets by feeding diff handle_string.

BTW, I have tried all solutions, but only this works.

dataset_switching