How to use least squares with weight matrix?
I found another approach (using W as a diagonal matrix, and matricial products) :
A=[[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,0,0]]
B = [1,1,1,1,1]
W = [1,2,3,4,5]
W = np.sqrt(np.diag(W))
Aw = np.dot(W,A)
Bw = np.dot(B,W)
X = np.linalg.lstsq(Aw, Bw)
Same values and same results.
I don't know how you have defined your weights, but you could try this if appropriate:
import numpy as np
A=np.array([[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,0,0]])
B = np.array([1,1,1,1,1])
W = np.array([1,2,3,4,5])
Aw = A * np.sqrt(W[:,np.newaxis])
Bw = B * np.sqrt(W)
X = np.linalg.lstsq(Aw, Bw)