How to use the __attribute__ keyword in GCC C?

__attribute__ is not part of C, but is an extension in GCC that is used to convey special information to the compiler. The syntax of __attribute__ was chosen to be something that the C preprocessor would accept and not alter (by default, anyway), so it looks a lot like a function call. It is not a function call, though.

Like much of the information that a compiler can learn about C code (by reading it), the compiler can make use of the information it learns through __attribute__ data in many different ways -- even using the same piece of data in multiple ways, sometimes.

The pure attribute tells the compiler that a function is actually a mathematical function -- using only its arguments and the rules of the language to arrive at its answer with no other side effects. Knowing this the compiler may be able to optimize better when calling a pure function, but it may also be used when compiling the pure function to warn you if the function does do something that makes it impure.

If you can keep in mind that (even though a few other compilers support them) attributes are a GCC extension and not part of C and their syntax does not fit into C in an elegant way (only enough to fool the preprocessor) then you should be able to understand them better.

You should try playing around with them. Take the ones that are more easily understood for functions and try them out. Do the same thing with data (it may help to look at the assembly output of GCC for this, but sizeof and checking the alignment will often help).


Think of it as a way to inject syntax into the source code, which is not standard C, but rather meant for consumption of the GCC compiler only. But, of course, you inject this syntax not for the fun of it, but rather to give the compiler additional information about the elements to which it is attached.

You may want to instruct the compiler to align a certain variable in memory at a certain alignment. Or you may want to declare a function deprecated so that the compiler will automatically generate a deprecated warning when others try to use it in their programs (useful in libraries). Or you may want to declare a symbol as a weak symbol, so that it will be linked in only as a last resort, if any other definitions are not found (useful in providing default definitions).

All of this (and more) can be achieved by attaching the right attributes to elements in your program. You can attach them to variables and functions.

Take a look at this whole bunch of other GCC extensions to C. The attribute mechanism is a part of these extensions.


There are too many attributes for there to be a single answer, but examples help. For example __attribute__((aligned(16))) makes the compiler align that struct/function on a 16-bit stack boundary.

__attribute__((noreturn)) tells the compiler this function never reaches the end (e.g. standard functions like exit(int) )

__attribute__((always_inline)) makes the compiler inline that function even if it wouldn't normally choose to (using the inline keyword suggests to the compiler that you'd like it inlining, but it's free to ignore you - this attribute forces it).

Essentially they're mostly about telling the compiler you know better than it does, or for overriding default compiler behaviour on a function by function basis.

Tags:

C

Gcc