How to vectorize a loop through a matrix numpy

Approach #1: NumPy-Vectorized

Here's a vectorized one -

def check_all(a, state): # a is input matrix/array
    # Get zeros and ones all masks
    zm = (a==0).all(1)
    om = (a==1).all(1)

    # "Attach" boundaries with False values at the start of these masks.
    # These will be used to detect rising edges (as indices) on these masks.
    zma = np.r_[False,zm]
    oma = np.r_[False,om]

    omi = np.flatnonzero(oma[:-1] < oma[1:])
    zmi = np.flatnonzero(zma[:-1] < zma[1:])

    # Group the indices and the signatures (values as 1s and -1s)
    ai = np.r_[omi,zmi]
    av = np.r_[np.ones(len(omi),dtype=int),-np.ones(len(zmi),dtype=int)]

    # Sort the grouped-indices, thus we would know the positions
    # of these group starts. Then index into the signatures/values
    # and indices with those, giving us the information on how these signatures
    # occur through the length of the input
    sidx = ai.argsort()
    val,aidx = av[sidx],ai[sidx]

    # The identical consecutive signatures are to be removed
    mask = np.r_[True,val[:-1]!=val[1:]]
    v,i = val[mask],aidx[mask]

    # Also, note that we are assigning all 1s as +1 signature and all 0s as -1
    # So, in case the starting signature is a 0, assign a value of 0
    if v[0]==-1:
        v[0] = 0

    # Initialize 1D o/p array, which stores the signatures as +1s and -1s.
    # The bigger level idea is that performing cumsum at the end would give us the
    # desired 1D output
    out1d = np.zeros(len(a),dtype=a.dtype)

    # Assign the values at i positions
    out1d[i] = v

    # Finally cumsum to get desired output
    out1dc = out1d.cumsum()

    # Correct the starting positions based on starting state value
    out1dc[:i[0]] = state

    # Convert to 2D view for mem. and perf. efficiency
    out = np.broadcast_to(out1dc[:,None],a.shape)
    return out

Approach #2: Numba-based

Here's another numba-based one for memory and hence perf. efficiency -

@njit(parallel=True)
def func1(zm, om, out, start_state, cur_state):
    # This outputs 1D version of required output.

    # Start off with the starting given state
    newval = start_state

    # Loop through zipped zeros-all and ones-all masks and in essence do :
    # Switch between zeros and ones based on whether the other ones
    # are occuring through or not, prior to the current state
    for i,(z,o) in enumerate(zip(zm,om)):
        if z and cur_state:
            cur_state = ~cur_state
            newval = 0
        if o and ~cur_state:
            cur_state = ~cur_state
            newval = 1
        out[i] = newval
    return out

def check_all_numba(a, state):
    # Get zeros and ones all masks
    zm = (a==0).all(1)
    om = (a==1).all(1)

    # Decide the starting state
    cur_state = zm.argmax() < om.argmax()

    # Initialize 1D o/p array with given state values
    out1d = np.full(len(a), fill_value=state)
    func1(zm, om, out1d, state, cur_state)

    # Broadcast into the 2D view for memory and perf. efficiency
    return np.broadcast_to(out1d[:,None],a.shape)