How to write this equation in publication?
You should be using split
not align
inside equation
. Introducing new variables for large repeating expressions and shifting your indexing by one will reduce the size of the equation. Finally I introduce an eqbreak
command to shift a split expression:
\documentclass[twocolumn]{article}
\usepackage{amsmath, amsfonts, amssymb, textcomp}
\newcommand{\eqbreak}[1][2]{\\&\hskip#1em}
\begin{document}
\begin{equation}
\begin{split}
X(m+1)
&= \frac{b-a}N \sum_{k=0}^{N-1} e^{-i2\pi km/N}\, x(a_k) \\
&= \frac{b-a}N \sum_{k=0}^{N-1} e^{-i2\pi a_km/(b-a)} \eqbreak[6]
\times x(a_k)\,e^{i2\pi a m/(b-a)} \\
&\xrightarrow{N\to\infty} e^{i2\pi a m/(b-a)} \,Qx\Bigl(\frac
m{b-a}\Bigr),
\end{split}
\end{equation}
where \( a_k = a + (b-a)k/N \).
\end{document}
Just for fun!
\documentclass{article}
\usepackage[a4paper,margin=2cm,twocolumn]{geometry}
\usepackage{mathtools}
\begin{document}
\begin{equation}
\begin{split}
X(m)
&=
\!
\begin{multlined}[t]
\frac{b-a}{N} \sum_{k=1}^{N} \Bigg[ x\left(a + \frac{k-1}{N}(b-a)\right)\\
\times e^{-\frac{2\pi i (k-1)(m-1)}{N}} \Bigg]
\end{multlined}\\
&=
\!
\begin{multlined}[t]
\frac{b-a}{N} \sum_{k=1}^{N}\Bigg[ x\left(a + \frac{k-1}{N}(b-a)\right) \\
\times e^{2\pi i a \frac{m-1}{b-a}}\\
\times e^{-2\pi i \left(a + \frac{k-1}{N}(b-a)\right)\times \frac{m-1}{b-a}}\Bigg]
\end{multlined}\\
& \xrightarrow{ N\to\infty }
\!
\begin{multlined}[t]
e^{2\pi i a \frac{m-1}{b-a}} \\
\times \int_{a}^{b} e^{2\pi i a \frac{m-1}{b-a}} Qx\left(\frac{m-1}{b-a}\right).
\end{multlined}
\end{split}
\end{equation}
\end{document}
I would propose you split the first two lines at a reasonably natural point. I would use explicit sizing instructions for the parentheses, and use \exp(...)
expressions.
\documentclass[twocolumn]{article}
\usepackage{amsmath, amsfonts, amssymb, textcomp}
\begin{document}
\begin{align}
&X(m) \notag\\
&= \frac{b-a}{N} \sum_{k=1}^{N} \exp\bigl(-i2\pi (k-1)(m-1)/N\bigr) \notag\\
&\qquad \times x\Bigl[a + (b-a)\frac{k-1}{N}\Bigr] \\
&= \frac{b-a}{N} \sum_{k=1}^{N} \exp\Bigl[-i2\pi \Bigl(a + (b-a)\frac{k-1}{N}\Bigr)
\frac{m-1}{b-a}\Bigr] \notag \\
&\qquad \times x\Bigl(a + (b-a)\frac{k-1}{N}\Bigr)
\exp\Bigl(i2\pi a \frac{m-1}{b-a}\Bigr) \\
& \xrightarrow{ N\to\infty } \exp\Bigl(i2\pi a \frac{m-1}{b-a}\Bigr)
Qx\Bigl(\frac{m-1}{b-a}\Bigr)\,.
\end{align}
\end{document}