I want to prove that two norms are equivalent but I am struggling with an upper bound
We simply have $$\|f\|_{L^2}^2 =\int_{-1}^1 |f|^2 \le 2\int_{-1}^1 |f(x)|^2 \frac1{1+x^2}=2\|f\|_H^2 $$ because $\frac1{1+x^2}\ge\frac12$ for all $x\in[-1,1]$.
We simply have $$\|f\|_{L^2}^2 =\int_{-1}^1 |f|^2 \le 2\int_{-1}^1 |f(x)|^2 \frac1{1+x^2}=2\|f\|_H^2 $$ because $\frac1{1+x^2}\ge\frac12$ for all $x\in[-1,1]$.