Identifying a quotient group (NBHM-$2014$)
I think you can set this map $$f:\mathbb C^*\to U,~~z=a+ib\mapsto \frac{a}{|z|}+i\frac{b}{|z|}$$ wherein $U=\{z\in\mathbb C^*\mid|z|=1\}$. Show this map is surjective with $\ker f=\mathbb R^*_{>0}$.
I think you can set this map $$f:\mathbb C^*\to U,~~z=a+ib\mapsto \frac{a}{|z|}+i\frac{b}{|z|}$$ wherein $U=\{z\in\mathbb C^*\mid|z|=1\}$. Show this map is surjective with $\ker f=\mathbb R^*_{>0}$.