If $A\cong B$, then $A\otimes C\cong B\otimes C$.

$2\mathbb{Z}\otimes\mathbb{Z}_2$ is not trivial. It is trivial inside of $\mathbb Z \otimes \mathbb{Z}_2$, a subtle but important difference. The "proof" you might have in mind that it is trivial would be

$$ 2n \otimes 0 = 0 \text{ and } 2n \otimes 1 = n \otimes 2 = 0 $$

but $n \otimes 2$ is only an element of $2\mathbb{Z}\otimes\mathbb{Z}_2$ if $n$ is even. Otherwise, you need the ambient module $\mathbb Z \otimes \mathbb{Z}_2$ to make sense of it.

Secondly, for your exact sequences. Do keep in mind that the isomorphism $2\mathbb{Z} \to \mathbb{Z}$ is a different map than the inclusion $2\mathbb{Z} \to \mathbb{Z}$.

So if we take the exact sequence

$$ 2\mathbb{Z} \to \mathbb{Z}\to\mathbb{Z}_2\to 0 $$

where the leftmost map is inclusion and tensor with $\mathbb{Z}_2$, we get the following commutative diagram $\require{AMScd}$ \begin{CD} 2\mathbb{Z} \otimes \mathbb{Z}_2 @>\text{inclusion}>> \mathbb{Z} \otimes \mathbb{Z}_2 @>>> \mathbb{Z}_2\otimes \mathbb{Z}_2 @>>> 0 \\ @VVV @VVV @VVV @VVV \\ \mathbb{Z}_2 @>\times 2>> \mathbb{Z}_2 @>>> \mathbb{Z}_2 @>>>0 \end{CD} where the rows are exact and the vertical arrows are isomorphisms.

That map $\mathbb{Z}_2 \xrightarrow{\times 2} \mathbb{Z}_2$ on the bottom is the zero map. To see that this must be the case, let us note that the isomorphisms $\to \mathbb{Z}_2$ are

$$ \begin{array}{ccc} 2\mathbb{Z} \otimes \mathbb{Z}_2 & \longrightarrow & \mathbb{Z}_2 \\ 2n \otimes 0 &\longmapsto & 0 \\ 2n \otimes 1 & \longmapsto & n \bmod 2 \end{array} \qquad \text{and} \qquad \begin{array}{ccc} \mathbb{Z} \otimes \mathbb{Z}_2 & \longrightarrow & \mathbb{Z}_2 \\ n \otimes 0 &\longmapsto & 0 \\ n \otimes 1 & \longmapsto & n \bmod 2 \end{array} $$

So the map on the bottom we can compute by looking at the composition $\mathbb{Z}_2 \to 2\mathbb{Z} \otimes \mathbb{Z}_2 \to \mathbb{Z} \otimes \mathbb{Z}_2 \to \mathbb{Z}_2$ and this composition takes $1 \mapsto 2 \otimes 1 \mapsto 2 \otimes 1 \mapsto 0$.