If every eigenvalue of $A$ is zero, does this mean $A$ is a zero matrix?
No, any strictly upper triangular matrix, such as:
$$\begin{pmatrix}0&1\\0&0\end{pmatrix}$$
will have all eigenvalues zero.
No, any strictly upper triangular matrix, such as:
$$\begin{pmatrix}0&1\\0&0\end{pmatrix}$$
will have all eigenvalues zero.