Implementing variadic min / max functions

There is a solution in C++17 which beats all answers proposed so far:

template <typename Head0, typename Head1, typename... Tail>
constexpr auto min(Head0 &&head0, Head1 &&head1, Tail &&... tail)
{
    if constexpr (sizeof...(tail) == 0) {
        return head0 < head1 ? head0 : head1;
    }
    else {
        return min(min(head0, head1), tail...);
    }
}

Notice how this:

  • requires only one function
  • you can't call this with fewer than two parameters
  • it compiles optimally

Using gcc 10.2 with -O3, the accepted answer compiles to:

min(int, int, int):
        cmp     esi, edi
        jge     .L2
        cmp     esi, edx
        mov     eax, edx
        cmovle  eax, esi
        ret
.L2:
        cmp     edi, edx
        mov     eax, edx
        cmovle  eax, edi
        ret

There are more instructions and a conditional jump for whatever reason. My solution compiles only to:

min(int, int, int):
        cmp     esi, edx
        mov     eax, edi
        cmovg   esi, edx
        cmp     esi, edi
        cmovle  eax, esi
        ret

This is identical to just calling std::min recursively for three parameters. (see https://godbolt.org/z/snavK5)


I appreciate the thought Yakk put into return types so I wouldn't have to, but it gets a lot simpler:

template<typename T>
T&& vmin(T&& val)
{
    return std::forward<T>(val);
}

template<typename T0, typename T1, typename... Ts>
auto vmin(T0&& val1, T1&& val2, Ts&&... vs)
{
    return (val1 < val2) ?
      vmin(val1, std::forward<Ts>(vs)...) :
      vmin(val2, std::forward<Ts>(vs)...);
}

Return type deduction is pretty awesome (may require C++14).


live example

This does perfect forwarding on arguments. It relies on RVO for return values, as it returns a value type regardless of the input types, because common_type does that.

I implemented common_type deduction, allowing mixed types to be passed in, and the "expected" result type output.

We support the min of 1 element, because it makes the code slicker.

#include <utility>
#include <type_traits>

template<typename T>
T vmin(T&&t)
{
  return std::forward<T>(t);
}

template<typename T0, typename T1, typename... Ts>
typename std::common_type<
  T0, T1, Ts...
>::type vmin(T0&& val1, T1&& val2, Ts&&... vs)
{
  if (val2 < val1)
    return vmin(val2, std::forward<Ts>(vs)...);
  else
    return vmin(val1, std::forward<Ts>(vs)...);
}


int main()
{
  std::cout << vmin(3, 2, 0.9, 2, 5) << std::endl;

  std::cout << vmin(3., 1.2, 1.3, 2., 5.2) << std::endl;

  return 0;
}

Now, while the above is a perfectly acceptable solution, it isn't ideal.

The expression ((a<b)?a:b) = 7 is legal C++, but vmin( a, b ) = 7 is not, because std::common_type decays is arguments blindly (caused by what I consider an over-reaction to it returning rvalue references when fed two value-types in an older implementation of std::common_type).

Simply using decltype( true?a:b ) is tempting, but it both results in the rvalue reference problem, and does not support common_type specializations (as an example, std::chrono). So we both want to use common_type and do not want to use it.

Secondly, writing a min function that doesn't support unrelated pointers and does not let the user change the comparison function seems wrong.

So what follows is a more complex version of the above. live example:

#include <iostream>
#include <utility>
#include <type_traits>

namespace my_min {

  // a common_type that when fed lvalue references all of the same type, returns an lvalue reference all of the same type
  // however, it is smart enough to also understand common_type specializations.  This works around a quirk
  // in the standard, where (true?x:y) is an lvalue reference, while common_type< X, Y >::type is not.
  template<typename... Ts>
  struct my_common_type;

  template<typename T>
  struct my_common_type<T>{typedef T type;};

  template<typename T0, typename T1, typename... Ts>
  struct my_common_type<T0, T1, Ts...> {
    typedef typename std::common_type<T0, T1>::type std_type;
    // if the types are the same, don't change them, unlike what common_type does:
    typedef typename std::conditional< std::is_same< T0, T1 >::value,
      T0,
    std_type >::type working_type;
    // Careful!  We do NOT want to return an rvalue reference.  Just return T:
    typedef typename std::conditional<
      std::is_rvalue_reference< working_type >::value,
      typename std::decay< working_type >::type,
      working_type
    >::type common_type_for_first_two;
    // TODO: what about Base& and Derived&?  Returning a Base& might be the right thing to do.
    // on the other hand, that encourages silent slicing.  So maybe not.
    typedef typename my_common_type< common_type_for_first_two, Ts... >::type type;
  };
  template<typename... Ts>
  using my_common_type_t = typename my_common_type<Ts...>::type;
  // not that this returns a value type if t is an rvalue:
  template<typename Picker, typename T>
  T pick(Picker&& /*unused*/, T&&t)
  {
    return std::forward<T>(t);
  }
  // slight optimization would be to make Picker be forward-called at the actual 2-arg case, but I don't care:
  template<typename Picker, typename T0, typename T1, typename... Ts>
  my_common_type_t< T0, T1, Ts...> pick(Picker&& picker, T0&& val1, T1&& val2, Ts&&... vs)
  {
    // if picker doesn't prefer 2 over 1, use 1 -- stability!
    if (picker(val2, val1))
      return pick(std::forward<Picker>(pick), val2, std::forward<Ts>(vs)...);
    else
      return pick(std::forward<Picker>(pick), val1, std::forward<Ts>(vs)...);
  }

  // possibly replace with less<void> in C++1y?
  struct lesser {
    template<typename LHS, typename RHS>
    bool operator()( LHS&& lhs, RHS&& rhs ) const {
      return std::less< typename std::decay<my_common_type_t<LHS, RHS>>::type >()(
          std::forward<LHS>(lhs), std::forward<RHS>(rhs)
      );
    }
  };
  // simply forward to the picked_min function with a smart less than functor
  // note that we support unrelated pointers!
  template<typename... Ts>
  auto min( Ts&&... ts )->decltype( pick( lesser(), std::declval<Ts>()... ) )
  {
    return pick( lesser(), std::forward<Ts>(ts)... );
  }
}

int main()
{
  int x = 7;
  int y = 3;
  int z = -1;
  my_min::min(x, y, z) = 2;
  std::cout << x << "," << y << "," << z << "\n";
  std::cout << my_min::min(3, 2, 0.9, 2, 5) << std::endl;
  std::cout << my_min::min(3., 1.2, 1.3, 2., 5.2) << std::endl;
  return 0;
}

The downside to the above implementation is that most classes do not support operator=(T const&)&&=delete -- ie, they do not block rvalues from being assigned to, which can lead to surprises if one of the types in the min does not . Fundamental types do.

Which is a side note: start deleting your rvalue reference operator=s people.