In-place type conversion of a NumPy array

Update: This function only avoids copy if it can, hence this is not the correct answer for this question. unutbu's answer is the right one.


a = a.astype(numpy.float32, copy=False)

numpy astype has a copy flag. Why shouldn't we use it ?


You can change the array type without converting like this:

a.dtype = numpy.float32

but first you have to change all the integers to something that will be interpreted as the corresponding float. A very slow way to do this would be to use python's struct module like this:

def toi(i):
    return struct.unpack('i',struct.pack('f',float(i)))[0]

...applied to each member of your array.

But perhaps a faster way would be to utilize numpy's ctypeslib tools (which I am unfamiliar with)

- edit -

Since ctypeslib doesnt seem to work, then I would proceed with the conversion with the typical numpy.astype method, but proceed in block sizes that are within your memory limits:

a[0:10000] = a[0:10000].astype('float32').view('int32')

...then change the dtype when done.

Here is a function that accomplishes the task for any compatible dtypes (only works for dtypes with same-sized items) and handles arbitrarily-shaped arrays with user-control over block size:

import numpy

def astype_inplace(a, dtype, blocksize=10000):
    oldtype = a.dtype
    newtype = numpy.dtype(dtype)
    assert oldtype.itemsize is newtype.itemsize
    for idx in xrange(0, a.size, blocksize):
        a.flat[idx:idx + blocksize] = \
            a.flat[idx:idx + blocksize].astype(newtype).view(oldtype)
    a.dtype = newtype

a = numpy.random.randint(100,size=100).reshape((10,10))
print a
astype_inplace(a, 'float32')
print a

You can make a view with a different dtype, and then copy in-place into the view:

import numpy as np
x = np.arange(10, dtype='int32')
y = x.view('float32')
y[:] = x

print(y)

yields

array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.], dtype=float32)

To show the conversion was in-place, note that copying from x to y altered x:

print(x)

prints

array([         0, 1065353216, 1073741824, 1077936128, 1082130432,
       1084227584, 1086324736, 1088421888, 1090519040, 1091567616])

Tags:

Python

Numpy